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“I am always doing  

that which I cannot do, 

in order that I may learn  

how to do it…” 

 

 

~ Pablo Picasso ~ 
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Summary  

 

Cortico-muscular !-band oscillations (30-60 Hz) describe synchronized activity between the sensorimotor 

cortex and muscles and is believed to play a pivotal role in dynamical tasks. Short-term modulation of 

the cortico-muscular !-band oscillations can be expected in a unilateral balance task because unilateral 

balance performance improves at a behavioural level as a function of short-term learning. Here, we 

targeted how cortico-muscular coherence (CMC) modulates in unilateral balance tasks across a balance-

training program. We expected that !-band CMC to alter as a function of short-term motor learning and 

behavioural performance changes. 20 young healthy adults performed balance tasks pre- and post-

training. Balance tasks were performed on wooden boards (continuous tasks) and a robot-controlled 

platform (perturbation-induced). 64-channel electro-encephalography, electromyography of 36 muscles, 

and kinetics were collected. !-band CMC between the sensorimotor areas and shank muscles of the 

stance leg significantly decreased post training in the perturbation-induced condition, while !-band CMC 

in the continuous balance tasks was not modulated. Mean centre-of-pressure (COP) velocity decreased 

significantly post training in the continuous conditions while mean centre-of-mass (COM) velocity did not 

show this. No significant behavioural changes, mean COM-velocity and head acceleration, were found in 

the perturbation-induced condition. Significant Pearson’s correlations coefficients indicated weak-to-

moderate positive relationships between !-band CMC and mean COP- and COM-velocity. CMC and 

behavioural changes as a result of the balance-training program showed no significant relationships. 

Perturbation-induced !-band CMC decreased while continuous !-band CMC did not change, suggesting 

task-dependent modulation during short-term balance learning. 

 

 

Key words: motor control; neural oscillations; cortico-muscular coherence; sensorimotor function; 

balance tasks; short-term learning 

 

 

Abbreviations: CNS: central nervous system; EEG: electro-encephalography; EMG: electromyography; 

CMC: cortico-muscular coherence; ERP: event-related potential; CI: confidence interval; AP: anterior-

posterior; ML: mediolateral; PCA: principal component analysis; ICA: independent component analysis; 

ECG: electrocardiogram; MRI: magnetic resonance imaging; DICS: dynamic imaging of coherent 

sources; CSD: cross-spectral density; PSD: power spectral density; TFR: time-frequency representation; 

COM: centre-of-mass; COP: centre-of-pressure; LME: linear mixed-effects (model); REML: restricted 

maximum likelihood; GLME: generalized linear mixed-effects (model); ANOVA: analysis-of-variance; 

AIC: Akaike information criterion; BIC: Bayesian information criterion; RMS: root-mean-squared; TA: 

tibialis anterior; PN: peroneus longus; NNMF: non-negative matrix factorization  
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1! Introduction 

The maintenance of postural balance is a complex sensorimotor task as it involves the processing and 

regulation of multisensory information and requires an accurate muscular activation (Taube and 

Gollhofer, 2011; Torres-Oviedo and Ting, 2010). Improvements in postural balance, as reflected in 

reduced fall risk, can be accomplished with long-term balance-training programs (Halvarsson et al., 

2013). Long-term balance programs may result in adaptations at the anatomical level (Taubert et al., 

2010) and excitability (Taube et al., 2007) of the central nervous system (CNS). Healthy adults are even 

able to improve their unilateral balance performance by decreasing postural sway with a 30-minutes 

balance training (van Dieën et al., 2015). While this study by van Dieën et al. (2015) highlights the 

effectiveness of learning to balance for a short period on kinematic and behavioural level, the exact 

involvement and mechanisms of the CNS accompanying short-term improvements of the postural 

balance are still under debate (Jacobs and Horak, 2007).  

 

In the CNS, neural populations interact with other populations to allow information flows from one group 

to the other. This neural communication within the multiple levels of the CNS is complex as it involves 

both spatial and temporal processing and regulation of the firing behaviour of millions of neurons (Kelso, 

1997). While it is unclear how these specific control strategies are generated by the CNS, spatio-

temporal coordination patterns within the CNS comprise synchronization between local and global neural 

populations in terms of periodic neural activity (Aumann and Prut, 2015). Such neural correlates have 

been observed between a widespread range of neural structures (Boonstra et al., 2009; Brown, 2000; 

Hori et al., 2013). However, the exact mechanisms and functions of this oscillatory behaviour remain to 

be explored. Nonetheless it is common sense that  these neural oscillations play a prominent role during 

multisensory and sensorimotor information processing across the sensorimotor system (Engel and Fries, 

2010).  

 

Neural oscillations between the sensorimotor cortex and muscles have been observed in a wide-spread 

range of motor control tasks (de Vries et al., 2016; Gwin and Ferris, 2012; Kristeva et al., 2007; 

Murnaghan et al., 2014; Perez et al., 2006; Witham et al., 2010). Again, they may subserve a role in 

information processing (Donoghue et al., 1998). The neural connectivity between the cortical regions and 

muscles can be estimated by cortico-muscular coherence (CMC), which is quantified by the normalized 

cross-spectrum between co-registered electro-encephalography (EEG) and electromyography (EMG) 

(Baker and Baker, 2003). CMC describes a linear relationship between neural oscillations in ascending 

and descending cortico-spinal tracts originating from the summated activity of pyramidal neuron 

populations at cortical levels and spinal motoneural populations at the muscular level (Baker et al., 1999; 

Witham et al., 2011). The cortico-spinal oscillations may be a direct consequence of phase-locked circuits 

along the sensorimotor tracts (e.g., fast pyramidal pathways) involving the discriminatory activation of 

the individual muscles (Lemon, 2008) or synergistically activated neighbouring muscles (Reyes et al., 

2017).  

 

Movement-related paradigms regarding the modulation of cortical power (amplitude-based local 

synchronization) and cortico-spinal synchronization (phased-based global synchronization, e.g., CMC) 

has mainly been investigated in the #-band (15-30 Hz) and compromise static upper-body tasks. Steady-

state periods of sustained contractions (e.g., isometric contractions) induce an upregulation of the local 

and global synchronization in the #-band, while (dynamic) movement preparation and execution abolish 
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this #-band synchronization (Baker et al., 1997). Short-term task-practicing gives rise to transient 

modulation of the #-band CMC, resulting in significantly higher #-band CMC after the learning period 

(Larsen et al., 2016). This modulation of #-band cortico-muscular phase synchronization with learning is 

correlated to improvements in the static manual motor performances at a behavioural level as well 

(Houweling et al., 2010; Kilner et al., 2000). The current idea regarding the modulation of #-band CMC is 

that these cortico-muscular oscillations may modulate during short-term task-practicing because of the 

“binding” process of novel information along the cortico-spinal axis (Lemon, 2008). For example, an 

upregulation of the cortico-spinal drive due to task learning may correspond to upweighting of sensory 

reafference via visual, proprioceptive (e.g., muscle spindles), or cognitive tracts (Baker, 2007). The 

existence of #-band CMC is inter-individually dependent but correlates to the rate of task performance 

improvement (Ushiyama et al., 2017).  

 

While most experimental studies concern #-band CMC during static precision tasks, the occurrence of !-

band (30-60 Hz) CMC in motor control is more enigmatic. !-band CMC has shown to be different in 

synchronization properties and spatial topology compared to #-band CMC (Kopell et al., 2000; 

Mehrkanoon et al., 2014). Neural !-band oscillations have mainly been observed during dynamical motor 

control tasks, such as locomotion (Petersen et al., 2012) and manual movements (Mendez-Balbuena et 

al., 2011; Omlor et al., 2007). Since !-band CMC has been associated with dynamical motor 

performance, it has been proposed that CMC in this band is related to movement correction, occurring 

after a prediction mismatch between the expected and real sensorimotor performance (Schoffelen et al., 

2005). Expectedly, the degree of movement errors in, for example, novel postural control tasks, would 

decrease as a function of practice and cortico-muscular oscillations in the !-band would decrease as well. 

However, it remains unclear how !-band CMC changes across a balance-training program, as this has 

never repeatedly been measured across motor learning.  

 

The main objective of the current study was to investigate the short-term modulation of global neural 

!-band (30-60 Hz) synchronization during unilateral balance tasks. The overall hypothesis was that the 

long-range !-band synchronization in the cortico-spinal drive modulates as a function of short-term 

learning in both ongoing oscillatory and event-related unilateral balance tasks. It was expected that 

(changes in) cortico-muscular !-band oscillations correlate to (changes at) behavioural level (e.g., 

kinematic and kinetic parameters) as well. !-band CMC was studied before (pre-timepoint) and after 

(post-timepoint) a short-term learning period of a novel dynamical full-body task. This novel dynamical 

full-body performance consisted of unilateral surface stability tasks at stable and unstable balance 

platforms. Pre- and post-timepoint were separated by a balance-training program of 30 minutes, which 

consisted of non-perturbation-induced 30s-trials. Three unilateral surface stability tasks on different 

balance boards were studied. The first two consisted of balancing unilaterally on either a stable or an 

unstable balance board on which participants stood as quiet as possible. While participants balanced 

unilaterally for half-a-minute on the balance board, the continuous neural oscillatory behaviour was 

investigated. To contrast, the third balance board was a robot-controlled balance platform on which 

participants should anticipate adequately to imposed mechanical perturbations. In the latter case, CMC 

was related to the perturbations and concern event-related behaviour. Using this paradigm may also 

clarify whether the continuous or event-related !-band CMC comprised different neural modulation. 

Learning effects were verified at behavioural level by the acquisition of full-body motion capture and 

measurement of ground reaction forces. To address possible neuro-physiological and behavioural 

interactions during learning, !-band CMC was correlated to behavioural outcomes.   
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2! Methods & Procedures 

2.1! Participants 

Twenty young right-legged healthy participants (15 males and 5 females; mean±SD; age: 24.7±3.0 

years; weight: 74.3±12.8 kg; height: 181.7±10.2 cm) were recruited at the Faculty of Behavioural and 

Movement Sciences. They were fellow students. They were included if they were aged between 18 and 

35 years. Exclusion criteria were: recent troubles with injuries (less than 6 months), experienced pain or 

discomfort or any range of motion limitation during activities of daily living and exercises, and a history 

of neurological disorders or a history of participation in balance practicing sports (e.g., ballet, yoga, or 

gymnastics), as this may limit balance improvements during the balance-training program (Kiers et al., 

2013). Participants signed an informed consent prior to performing the experiment. The local ethical 

committee of the Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VCWE-

2016-200) approved the experiment. 

 

After extended pilot testing with five participants, a sample size calculation was performed using a 

dependent T-test in G*power 3.1 (Universität of Düsseldorf, Germany). An effect size of 0.80 was 

established based on the differences in the means and standard deviations between the pre- and post-

timepoint in CMC-estimates in the frequency band of 30-60 Hz. Alpha-level and power were 0.05 and 

0.95, respectively. This a-priori power analysis showed that a sample size of 19 participants was 

necessary to reject the null hypothesis that the means of CMC within the frequency band of 30-60 Hz 

were equal between pre- and post-timepoint. Accordingly, 20 people were recruited to participate in the 

present study. 

 

2.2! Experimental paradigm 

We used a longitudinal study design with intra-subject pre-post comparisons. All measurements were 

conducted at the Vrije Universiteit Amsterdam. The measurement protocol consisted of a pre-timepoint, 

balance-training program and post-timepoint (Figure 1). At the pre- and post-timepoints, three unilateral 

balance tasks were executed on stable, unstable, and robot-controlled boards. Prior to the protocol, two 

reference trials were conducted: sitting on a chair and quiet standing on a force plate. Both reference 

trials were performed with open eyes and lasted 60 seconds. Stable and unstable board trials were 

performed on both legs and the robot-controlled board on the (dominant) right leg, resulting in five 

conditions: left stable, right stable, left unstable, right unstable, and robot-controlled. Subjects stood 

unilaterally on a stable or unstable wooden board during the stable and unstable board tasks, 

respectively (Figure 2A and B). Participants performed unilateral balance tasks on the right and left leg 

alternately until they performed five trials on both legs. A trial lasted 30 seconds. Participants had a 

break of 30 seconds between consecutive trials in order to prevent fatigue. Prior to every condition, 

participants performed one familiarization trial of 30 seconds on the balance board.  
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Figure 1. Schematic representation of the measurement protocol. ‘Pre-timepoint’ and ‘Post-timepoint’ both 
consist of five experimental conditions: ‘left stable’, ‘right stable’, ‘left unstable’, ‘right unstable’, and ‘robot-
controlled’. The two timepoints were intermitted by a balance-training program of 30 minutes. Training and 
board effects of the stable and unstable board were determined based on the average of five trials per 
timepoint and condition, respectively. Training effects of the robot-controlled balance board were investigated 
by the average of ten trials (330 perturbations) per timepoint. 
 

In the third balance task, rotational perturbations were imposed on the axis of the robot-controlled 

balance board (Figure 2C). Participants performed ten trials of 30-40 perturbations on the right leg, 

comprising 330 perturbations in total. Perturbations had a magnitude of +3° or -3° and were imposed at 

a rate of ±1 per second, resulting in single trial duration of ±40s. Extensive pilot measurements were 

executed to verify the number of trials, amount of perturbations, perturbation magnitude, intra- and 

inter-perturbation time in relation to the behavioural and neuro-physiological outcomes, such as the 

positive and negative potential characteristics of the event-related potential (ERP) (e.g., N200 and 

P300). To determine the number of perturbations a bootstrapping method was applied on pilot results 

(see Appendix B). The 95% confidence interval (CI) was estimated based on the random selection of the 

time-locked potential at Cz of 2-380 perturbations. This estimation procedure of the random selection of 

potentials was repeated for 5,000 times. The resulting exponential decay showed that the imposition of 

320 perturbations would lead to an increase of <5% of the 95% CI, $%&'()=[-0.250; 0.287 µV], compared 

to the estimated 95% CI of the grand average ERP based on 380 perturbations, $%&'()=[-0.240; 0.276 

µV]. Perturbations were sinusoidal and had a magnitude of +3° or -3°. The board angle changed with an 

angular velocity was equal to +6°/s or -6°/s for 0.5s, reached the maximal value of +3° or -3°, and 

returned to its equilibrium. Pilot measurements showed that with these perturbations parameters people 

did not tend to grab to the hand rails next to the robot-controlled balance platform.  

 

On every of the three balance boards, participants were instructed to place one foot parallel to attached 

tape on that particular balance board. Participants stood in socks on the balance boards, because 

proprioceptive signalling pathways of the feet is one of the main pathways associated with balance 

control (Mohapatra et al., 2014). When participants stood balanced unilaterally, they were instructed to 

place their arms akimbo, stand as quite as possible and try to avoid stepping off the board. In the robot-

controlled balance task, participants were instructed to anticipate adequately on every perturbation and 

stabilize their body at the pre-perturbation equilibrium. During all conditions, they were also asked to 

fixate their gaze at a white cross of 10x10 cm on the wall at eye level at a distance of five meter, as 

head and eye movements may introduce excessive movement artefacts to the EEG. Participants were 

allowed to use their arms to maintain balance, since the arms are essential to regulate angular 

momentum in balance. A trial was considered as invalid when the participant stepped off the balance 

board or grabbed one of the chairs next to them in order to prevent falling.  
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Pre- and post-timepoints were intermitted by a balance-training program. In this balance-training 

program of 30 minutes, participants practiced their unilateral balance on two boards on both legs. These 

balance boards varied in height in order to ensure that the balance task became more challenging 

(Sherrington et al., 2008). While practicing on different balance boards is recommended (Kümmel et al., 

2016), standardization of the intensity, duration, and volume of the balance-training programs is 

currently lacking except for general guidelines (Lesinski et al., 2015; Taube and Gollhofer, 2011). 

Accordingly, participants should practice 4-6 sets for 30 seconds unilaterally at every board separated by 

30s pauses followed by the same procedure with the other leg. Therefore, in the current study, 5 

unilateral trials of 30 seconds were conducted with 30s rest between trials on every balance board. 

Between the two boards, participants got a rest of 5 minutes to avoid fatigue.  

 

   

Figure 2. Balance boards as used in the current study. A: Stable board. B: Unstable board. C: Robot-
controlled balance platform.   

2.3! Data acquisition 

2.3.1! Balance board specifications 

See Table 1 for the width surface, radius cylinder, and board height of the balance boards. The stable 

board (Figure 2A) consisted of a block of wood that was not able to rotate or translate and was 

comparable with a rigid solid ground. The unstable board (Figure 2B) had been constructed as a partial 

cylinder, creating an unstable surface around one axis (one degree of freedom) with a flat surface on top 

of the cylinder. The unstable board was constrained to rotate around the anterior-posterior (AP) axis, 

because controlling the medial-lateral (ML) sway seemed cortically and muscularly the most challenging 

task to maintain balance (Kelly et al., 2012; Slobounov et al., 2008). With the robot-controlled balance 

platform (Figure 2C) (HapticMASTER, MOOG B.V., Nieuw-Vennep, The Netherlands) mechanical 

perturbations can be exposed and regulated externally. The footplate of the robot-controlled balance 

platform can rotate around an axis beneath the participant. In the current study, position-based 

perturbations (e.g., board angle) were selected to manipulate the axis beneath the robot-controlled 

balance board. Board angle of the balance platform was acquired with a sampling rate of 200 samples/s. 

Since results of the robot-controlled balance platform were lacking, validity and reliability of the platform 

were investigated extensively. Intra-class correlation coefficients were computed between the time series 



Research Master - Final Report  
 

 10/48 
 

containing the same perturbations to assess the reliability. Intra-class correlation coefficients were 

ranged between 0.999 and 1.000, implying that perturbations were completely reproducible.  

 

Table 1. Mechanical characteristics of the balance boards as used during the measurement protocol. 

Board name Width surface (cm) Radius cylinder (cm) Height of board (cm) 

Stable board 40.0 N/A 10.0 

Unstable board 20.0 24.0 13.5 

Robot-controlled board 11.3 11.3 24.0 

Training board 1 20.0 24.0 13.5 

Training board 2 20.0 24.0 18.5 

 

Participants were prepared with EEG, EMG, and kinematic equipment by two researchers in order to 

reduce preparation time. EEG, EMG, kinematic, and kinetic data were acquired during each trial at the 

pre- and post-timepoints. The start of every trial was marked by a trigger and was used for offline 

alignment of EEG, EMG, kinematic, and kinetic time series.  

2.3.2! Electro-encephalography 

Participants wore a 64-electrode EEG cap. The EEG cap was placed according the international 10-20 

standard. Impedance gel (SonoGel, Bad Camberg, Germany) was injected to improve the impedance 

between the skin and every electrode with a threshold of 10 k! during recordings. Every channel was 

recorded and 24-bits analogue-to-digital converted at 2,048 samples/s by a TMSi Refa 128-channel 

amplifier (TMSi, Twente, The Netherlands). An average common reference of the 128 channels (64 EEG 

channels and 64 unipolar EMG channels) was applied as reference. Prior to measurements, participants 

were asked to avoid eye blinking, jaw clenching, head movements, or facial expressions that could 

introduce artefacts into the EEG signals. 

2.3.3! Electromyography 

Surface EMG activity of tibialis anterior, peroneus longus, gastrocnemius medialis, soleus, rectus femoris, 

vastus lateralis, biceps femoris, adductor longus, gluteus medius, rectus abdomis, external oblique, 

longissimus, iliocostalis, latissimus dorsi, pectoralis major, trapezius descendens, deltoid medius, and 

sternocleidomastoideus were bilaterally measured, resulting in the acquisition of 36 muscles. Activity of 

these muscles had been acquired as it is thought that they play a major role in balance. EMG time series 

were acquired with the remaining unipolar (64) and bipolar (4) channels of the Refa 128-channel 

amplifier, equalling the collection of the activity of 18 muscles bilaterally. Ag/AgCl surface electrode pairs 

(Medicotest, Ambu® Blue Sensor®, type: N-00-S/25) were attached according SENIAM conventions 

(Hermens et al., 2000). The inter-electrode distance was about 2.0 cm. As EEG and EMG were acquired 

with the same amplifier, the ground channel of the EEG had been used as reference for the unipolar EMG 

instead of placing reference electrodes.  

2.3.4! Kinematics and kinetics 

Full-body kinematics were acquired with one Optotrak camera (Northern Digital, Waterloo, ON, Canada), 

which was placed posterior to the subject. Seventeen three-dimensional single LED markers were placed 

on the heels (proximal part of the calcaneus), knees (posterior between medial and lateral condyles), 

hips (left and right SIPS), shoulders (posterior part acromion), elbows (medial epicondyle and 

olecranon), wrists (ulnar and radial styloid processes), and neck (spinous process level C7) to obtain 
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their 3D-positions with a sampling frequency of 150 samples/s. Two single LED markers were attached to 

each elbow and wrist to ensure that at least one marker was visible during the experiments. 

GRFs were measured with a customized force platform, which is made by the Department of Human 

Movement Sciences of the Vrije Universiteit in Amsterdam. The signals of the force platform were 

amplified and sampled by a sampling frequency of 200 samples/s.  

 

2.4! Data pre-processing 

All analyses were performed with the software of MATLAB 2015b (Mathworks Inc., Natick, USA). In 

addition, the open-source FieldTrip Toolbox was used for pre-processing and artefact detection 

(http://fieldtrip.fcdonders.nl/) (Oostenveld et al., 2011). Pre-processing started with the re-referencing 

of the EEG and derivation of bipolar EMG signals, because an average common reference was applied 

across all 128 unipolar channels of the Refa amplifier while 64 EEG and 64 unipolar EMG channels were 

measured simultaneously. EEG signals were re-referenced to an average common reference and one 

bipolar EMG derivation was determined out of every two unipolar EMG derivations. Principal component 

analysis (PCA) and independent component analysis (ICA) were consecutively applied to remove the 

contamination of the electrocardiogram (ECG) from the bipolar EMG signals, since the frequency content 

of the EMG signals is retained after the application of these multivariate statistical approaches 

(Willigenburg et al., 2012). PCA and ICA decompose multivariate datasets of time series into sets of 

perpendicularly uncorrelated and statistically uncorrelated modes, respectively (Jutten and Herault, 

1991). The first PCA-mode was consistently contaminated with ECG and was hence removed. The 

number of removed ICA-modes ranged between 2 and 8 modes. ICA-modes were inspected visually and 

removed manually when they were considered as ECG-contaminated.  

 

The EEG and EMG time series were de-meaned, and band-pass filtered (bidirectional second-order 

Butterworth filter between 5 and 250 Hz). Line noise and its higher harmonics were removed by a notch 

filter (bidirectional second-order Butterworth around 50, 100, 150, 200, and 250 Hz with a bandwidth of 

1 Hz). The EEG time series were temporarily re-referenced to channel F7 to detect bad channels. EEG 

channels were qualified as ‘bad’ in case the channel contained a flat line or a too high or low amplitude. 

Channels were excluded based on amplitude when the variance of a single channel exceeded 3 times the 

standard deviation or 10 times the maximum of all channels. On average, 0.7 channels (range: 0-5 

channels) were removed in every trial. The activity of the bad EEG channels was interpolated with a 

spheric spline interpolation based on the activity of the neighbouring channels and electrode positions of 

the channels. After checking bad channels, EEG time series were re-referenced to an average common 

reference again. Advanced artefact detection and removal was performed with ICA. ICA was applied on 

the EEG time series using the FieldTrip Toolbox functions including an extended fastica algorithm with 

online bias adjustment. Single ICA-modes were removed when the median frequency of that particular 

mode was lower than 1 Hz or higher than 60 Hz. Finally, the activity of left and right 

sternocleidomastoids were implemented in an additional PCA to reduce the muscular artefacts in the EEG 

time series.   

 

Rectified EMG signals were obtained by taking the modulus of the complex-valued analytic signal, 

because rectification provides the summated temporal firing pattern of groups of motor units 

independent of their action potential shape (Boonstra and Breakspear, 2012). In CMC-estimates based 

on sensor-level EEG, EEG time series were adjusted to reference-free current source density derivations 
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using spherical spline with default parameters in FieldTrip regarding conductivity, lambda and order. The 

application of a Laplacian derivative improves the subsequent EEG-EMG coherence estimates (Mima and 

Hallett, 1999), because of the spatial filtering effect of current source density around a unique EEG 

channel.  

 

2.5! Data analysis 

2.5.1! Source reconstruction 

After the analysis at sensor-level, cortical sources revealing maximal power modulation between pre- 

and post-timepoint around a predefined frequency (e.g., 40 Hz) were identified by the application of 

dynamic imaging of coherent sources (DICS) beamformers (Groß et al., 2001). The application of this 

type of spectral beamformers may offer an advantage for the consecutive CMC-estimates. To do so, a 

head model, lead field, and cross-spectral density (CSD) matrix were estimated. The head model was 

constructed using the magnetic resonance imaging (MRI) templates implemented in FieldTrip, because 

the participants’ anatomical MRI data had not been collected. Default parameters of the shape of 

different head tissues were used to construct the head model. Admittedly, the source estimation 

accuracy would have increased if this head model could have been constructed with the individual 

participant’s MRI. A lead field model was constructed based on a default template that is implemented in 

FieldTrip, three-dimensional electrodes’ positions, and three-dimensional grids. The lead field resulted in 

a matrix describing the physical propagation of the electrical activity from the current sources to the 

channels at the surface of the EEG-cap. The CSD-matrix was estimated between all Fourier-transformed 

EEG signals using a multitaper Fourier transform with a 2s Hanning window. The CSD-matrix 

computation was centred around the frequency of 45 Hz, because bivariate CMC-estimates pinpointed 

significant CMC between 30-60 Hz. This CSD-matrix was pooled over consecutive windows within the 

EEG signals of every individual trial. Spatial filters were applied to estimate the reconstructed source 

signals.  

 

The resulting reconstructed sources were compared using a cluster-based permutation test. The cluster-

based permutation test is a non-parametric test, which does not require probability distribution 

assumptions and can solve the multiple comparisons problem occurring in voxel-matrices (Maris and 

Oostenveld, 2007). Cluster-based permutation tests were used for within-subject statistics for the 

statistical assessment of cortical areas showing !-band power (i.e., 30-60 Hz) modulation between pre- 

and post-timepoint. Significant voxels yield the cortical areas of the sources, which explained significant 

!-band power modulation. The permutation p-value of the permutation distribution was approximated 

with Monte Carlo estimation by repeating random partitions for 2*1013 times. Cluster-alpha and critical-

alpha for paired T-statistic were set at 0.00001 and 0.025, respectively. The reconstructed cortical 

source with significant !-band power modulation between pre- and post-timepoint was selected. Right 

and left hemispheric virtual source signals based on the CTF-coordinates were decomposed by singular 

value decomposition giving the x-, y-, and z-direction of the significant reconstructed signal that 

explained most variance (e.g., the largest temporal eigenvector). This most prominent mode of both 

virtual source signals was consequently used as EEG time series for the CMC-estimates. 

2.5.2! Spectral analysis 

Power spectral densities (PSD) of the EEG channels of the sensorimotor cortex and the rectified EMG of 

the shank muscles channels for CMC-analysis were computed according Welch’s segmentation method 
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including a Hamming window of 0.50 seconds with an overlap of 50% between different windows (Welch, 

1967). EEG and EMG PSD spectra were logarithmically transformed to stabilize normality (Halliday et al., 

1995). For connectivity analysis, the rectified EMG and EEG signals were spectrally transformed, also 

following Welch’s segmentation approach. Auto-spectra and cross-spectra of the EEG and EMG time 

series were estimated using Fourier-transformed epochs of 0.50 seconds with a Hamming window with 

an overlap of 50% between consecutive windows. Hence, CMC was estimated between the ‘beamformed’ 

EEG and multiple (e.g., synergetic) rectified EMG signals. In general, coherence is defined as the 

modulus of the cross spectrum between an EEG and EMG signal divided by the square root of the product 

of both power spectra and was estimated accordingly: 

 

           $*+,- . / ,01
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5 4
                        (1) 

 

where 78 .  and 98 .  represent the Fourier transforms of an EEG and EMG signal at the i-th section as a 

function of frequency and&5&denotes the complex conjugate. Magnitude-squared coherence spectra were 

Fisher’s Z-transformed and consecutively averaged over trials and participants for every timepoint. The 

Fisher’s transform assigned a constant value to the variance of the coherence to stabilize normality 

(Rosenberg et al., 1989). After pooling coherence of trials, and participants, the inverse Fisher’s 

transform was applied in order to obtain a pooled CMC-estimate between 0 and 1. The !-band (30-60 

Hz) was the frequency range of interest, since significant !-band CMC was observed in pilot experiments 

(Appendix A). 

 

The 10 continuous EEG time series containing the 30-40 movement-related potentials of the robot-

controlled balance platform trials were time-locked into epochs of 1,000 ms after standard artefact-

removal. Epochs were segmented from 400 ms before to 600 ms after perturbation onset. Epochs were 

consecutively pooled within and across trials and participants for both timepoints, resulting in an average 

of 4,950 movement-related potentials at pre- and post-timepoint. EEG and EMG time series were 

transferred to the frequency domain according a multi-taper frequency-convolution with a Hanning-taper 

as implemented in FieldTrip. Consequently, time-frequency representations (TFRs) of relative power and 

coherence were constructed.  

 

2.5.3! Behavioural analysis 

Trials were excluded from further analysis in case they contained missing values at the begin or end of 

time series creating instability during extrapolation. Furthermore, trials were not considered for analysis 

if these contained excessive variance, for example, in case, the participant grabbed the hand rails 

multiple times during a single trial. Missing values within the kinematic time series were interpolated 

using cubic splines. Kinetic signals were additionally low-pass filtered (bidirectional second-order 

Butterworth filter at 15 Hz). Kinematic and kinetic time series were averaged for all trials and subjects 

per condition and timepoint. 

 

Two main outcomes of the kinematic and kinetic data were determined: mean centre-of-mass (COM) 

velocity and mean centre-of-pressure (COP) velocity, since these biomechanical parameters play a 

significant role in maintaining human balance (Hof, 2007). Although the unstable board could only rotate 

around the AP-axis, AP-sway was taking into consideration, since it has been shown that minimizing 

sway in a certain direction may result in an upregulation of the orthogonal direction (Balasubramaniam 
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et al., 2000). Mean COM- and COP-velocity in AP- and ML-direction were computed by taking the mean 

of the modulus of the time series of the COM- or COP-velocity in each direction (van Dieën et al., 2015). 

Since the trials consisted of a standardized duration the mean COM- and COP-velocity are equivalent to 

the mean COM- and COP-velocity, respectively. It has been suggested that both mean COM- and COP-

velocity in ML-direction is an accurate and operational performance measure to assess the (gradual) skill 

acquisition during balance tasks (van Dieën et al., 2010).  

 

2.6! Statistical analysis 

2.6.1! Statistics of neurophysiological data 

CMC was pooled for trials and participants and considered as significant different from zero at a certain 

frequency when its value surpassed the 95% CI. The 95% CI was estimated as : ; <=<> ?0@A where B8 is 

the amount of windows (Halliday et al., 1995). The CI was adjusted to take into account the overlap 

between consecutive windows (Welch, 1967) and was set at 0.022.  

 

The equality of the means of the coherence estimates at every frequency across pre- and post-

timepoints was tested with the CD-statistic as proposed by Amjad and colleagues (1997) (Amjad et al., 

1997). The CD-test statistic to assess the equality in the means of the coherence estimates as a function 

of frequency is: 

              CD / E B8 5 F8D ;
G ?05HIJK
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In which FN represents the i-th pair of the Z-scored modulus of the coherency, B8 the amount of disjoint 

sections, and O the amount of coherence estimates. Significance level of this CD-statistic was set at the 

value CGPQL@AJD . If a significant difference is indicated by the CD-value then the CMC-spectra should be 

considered to see whether the CMC-modulation corresponds to an increase or decrease as a function of 

the balance-training program.  

 

Cortico-muscular time-frequency coherence representations were compared with Timepoint as factor 

using cluster-based permutation tests with a dependent T-test as test statistic. CMC was pooled for 

consecutive perturbations within single trials. Like the beamforming statistics, Monte Carlo estimations 

with 2R1013 random partitions were used to estimate the probability distribution. The T-values of the 

cluster-based permutation test were thresholded for statistical significance and plotted as a function of 

frequency and time as well.  

 

2.6.2! Statistics of kinematics and kinetics 

Given the probability of correlations between the trials of the pre- and post-timepoints within a single 

participant and given performance variability between participants, a linear-mixed effects (LME) model 

was fitted in order to obtain more powerful repeated measures statistics. Four LME-models with different 

behavioural outcomes were fitted on the COM- and COP-data as acquired with the trials on the stable 

and unstable balance board. These four behavioural outcomes were: mean COM-velocity in (1) ML-

direction, and (2) ML- and AP-direction, and mean COP-velocity in (3) ML-direction, and (4) ML- and AP-

direction. The estimated LME-model was equal to: 
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in which the fixed effects are represented by the intercept (#^), Timepoint (#A), Leg (#D), Board (#d) and 

three two-way interactions between Leg and Board (#f), Timepoint and Board (#(), and Leg and 

Timepoint (#h), and a three-way interaction between Timepoint, Leg, and Board (#i). Random effects are 

!^ and !A, including the random effect of the intercept and slope, respectively, across participants. Since 

the initial balance level of participants may influence possible balance improvements, !^ and !A were 

allowed to be correlated. Finally, j corresponds to the residual error term. The significance level was set 

at an alpha level of 0.05. The random factor variance of the intercept was estimated using restricted 

maximum likelihood (REML). In case a Gaussian distribution in the (logarithmically transformed) data 

was lacking as shown by a boxplot, a generalized linear mixed-effects (GLME) model was constructed. To 

investigate the mean COM-velocity response of the robot-controlled balance platform, a new LME-/GLME-

model was created containing intercept (#^) and Timepoint (#A) as fixed effects and !^ and !A as random 

effects. Mean COM-velocity of the robot-controlled balance platform was only analysed in the ML-

direction, since perturbations were imposed in the ML-direction.   

 

Finally, Pearson’s correlations were computed between !-band CMC and mean COP-velocity for every 

participant independent of timepoints. Furthermore, to investigate correlations associated with motor 

learning, Pearson’s correlations were calculated between the difference in !-band CMC and the difference 

in mean COP- and COM-velocity between pre- and post-timepoint.  
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3! Results 

3.1! Behavioural results  

3.1.1! Stable and unstable board 

A. B. 

  

C. D. 

  
Figure 3. Grand averages across trials and participants of the mean velocity of centre-of-pressure (COP) and 
centre-of-mass (COM) data. A and B: Mean COP- and COM-velocity, respectively, based on the absolute sway 
in anterior-posterior and mediolateral direction across timepoints, legs and board. Error bars indicate 1 
standard deviation. C and D: Mean COP- and COM-velocity, respectively, based on the excursion in medial-
lateral direction across timepoints, legs and boards. Note that the y-axes of A and C are different compared to 
B and D. 
 

Figure 3 illustrates mean COP- and COM-velocity in AP- and ML-direction and in ML-direction. Mean COP- 

and COM-velocity were logarithmically transformed, however, boxplots identified that Gaussian 

distributions were still lacking. Four GLME-models were constructed according Equation 3. The GLME-

model of the mean COP-velocity in ML- and AP-direction revealed significant main effects of Timepoint, 

and Board and a significant two-way interaction of Timepoint x Board (Figure 3A). Hypothesis testing 

with F-tests revealed a significant effect of Timepoint, F(1,583) = 3.95, p = .047 in which the post-

timepoint (3.726±0.006 cm/s; mean±standard error of the mean) was associated with a lower mean 

COP-velocity compared to the pre-timepoint (5.008±0.010 cm/s). In addition, there was a significant 

effect of Board, F(1,583) = 210.61, p < .001. The unstable board was related to a higher mean COP-

velocity in ML- and AP-direction (6.255±0.009 cm/s) compared to the stable board (2.582±0.003 cm/s). 

There was a significant Timepoint x Board interaction whereby the mean COP-velocity in ML- and AP-

direction on the stable board decreased less between pre- and post-timepoint than on the unstable 

board, F(1,583) = 25.48, p < .001. The descriptive statistics for the Timepoint x Board interaction were: 
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2.805±0.006 cm/s on the stable board at the pre-timepoint and 2.356±0.005 cm/s at the post-

timepoint; and 7.311±0.019 cm/s on the unstable board at pre-timepoint and 5.153±0.011 cm/s at the 

post-timepoint.  

 

The GLME-model of the mean COM-velocity in ML- and AP-direction (Figure 3B). revealed a significant 

main effect of Board and a significant two-way interaction between Timepoint x Board. F-tests indicated 

a significant effect of Board, F(1,661) = 6.68, p = .010. Balancing unilaterally on the unstable board 

corresponded to an increase of 0.330±0.002 cm/s in mean COM velocity in ML- and AP-direction relative 

to the stable board. The Timepoint x Board interaction indicated that the mean COM velocity in ML- and 

AP-direction on the stable board decreased less than on the unstable board between the pre- and post-

timepoint, F(1,661) = 10.25, p = .001. Mean values for the Timepoint x Board interaction were: 

1.357±0.003 cm/s on the stable board at the pre-timepoint and 1.276±0.002 cm/s at the post-

timepoint; and 1.790±0.005 cm/s on the unstable board at pre-timepoint and 1.486±0.004 cm/s at the 

post-timepoint. 

 

The GLME-model of the mean COP-velocity in ML-direction (Figure 3C) showed a significant main effect 

of Timepoint and Board, and significant two-way interactions effects of Leg x Board and Timepoint x 

Board. An analysis-of-variance (ANOVA) revealed a significant effect of Timepoint, F(1,583) = 4.44, p = 

.036, whereby the post-timepoint (1.668±0.003 cm/s) was associated with a lower mean COP-velocity in 

ML-direction than the pre-timepoint (2.206±0.005 cm/s). There was also a main effect of Board, F(1,583) = 

229.38, p < .001. Standing on the unstable board (2.747±0.004 cm/s) was associated with an increase 

of the mean COP-velocity in ML-direction compared to the stable board (1.155±0.001 cm/s). The 

significant two-way interaction of Leg x Board, F(1,583) = 9.81, p = .002, revealed that the mean COP-

velocity in ML-direction was lower while standing on the right leg on the stable board compared to 

balancing on the left leg on the unstable board. The mean COP-velocity in ML-direction was lowest while 

balancing on the right and left leg on the stable board (1.114±0.002, and 1.195±0.002 cm/s, 

respectively), followed by balancing on the right and left leg on the unstable board (2.337±0.007, and 

3.151±0.010 cm/s, respectively). Furthermore, the significant two-way interaction of Board x Timepoint, 

F(1,583) = 19.28, p < .001, indicated that the balancing unilaterally on the unstable board resulted in a 

higher decrease as a function of time in mean COP-velocity in ML-direction relative to the stable board. 

The descriptive statistics of the Timepoint x Board interaction were: 1.250±0.002 cm/s on the stable 

board at the pre-timepoint and 1.057±0.002 cm/s at the post-timepoint; and 3.214±0.010 cm/s on the 

unstable board at pre-timepoint and 2.301±0.006 cm/s at the post-timepoint. 

 

Finally, there was a significant main effect of Board and a significant two-way interaction effect of 

Timepoint x Board according the GLME-model of the mean COM-velocity in ML-direction, as illustrated in 

Figure 3D. The significant effect of main effect of Board, F(1,661) = 9.92, p = .002, shows that balancing 

on the unstable board resulted in an increase of the mean COM-velocity in ML-direction with 

0.230±0.046 cm/s relative to the stable board. Besides, as indicated by the other three F-tests, 

balancing unilaterally on the unstable board over time resulted in a higher decrease in mean COM-

velocity in ML-direction compared to the stable board, F(1,661) = 10.11, p = .001, as indicated by a 

significant two-way interaction of Timepoint x Board. The mean COP-velocity decreased less on the 

stable board (0.052±0.002 cm/s) than the unstable board (0.227±0.003 cm/s) as a function of time.  
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A.!   

B.!  
Figure 4. Individual response curves of the A: mean centre-of-pressure (COP) and B: mean centre-of-mass 
(COM) velocity in anterior-poster (AP)- and mediolateral (ML)-direction across the two timepoints. Participants 
balanced unilaterally on the unstable board on their left leg. The means at both timepoints are the average of 
the five trials as performed at that particular timepoint and are represented by the big dots. Smaller dots show 
the participant’s performance at an individual trial at this condition. Fitted least-squared lines are illustrated by 
the green lines and are based on the means of the pre- and post-timepoint. Same coloured error bars at 
timepoints is related to 1 standard deviation. Abbreviations P01–P20 correspond to the participant number. 
Note that kinetic data have not been acquired during the experiments of P01-P05. vCOP: COP-velocity; vCOM: 
COM-velocity. 
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Although significant main effects of the GLME-models were indicated by the F-tests, the response curves 

of Figure 4 illustrate that both initial COP- and COM-velocity in AP- and ML-direction and the change in 

COP- and COM-velocity as a function of training were not homogenous among participants. This 

heterogeneous initial balance level and balance response to the balance-training program indicates that 

there are inter-individual differences in the behavioural data. Giving the four constructed GLME-models, 

the null-hypothesis can be tested that the intercept and slope of the random effect Subject is 

significantly different from 0 (k^l&!^ m <). Since the 95% CI of the four GLME-models did not contain 0, 

the random effect Subject of both intercept and slope was significant in the four GLME-models (intercept; 

slope: COP-velocity in AP-ML: $%8nopqrpsot'()=[0.508; 1.161 cm/s]; $%uvwspt'()=[0.153; 0.770 cm/s] and ML-

direction $%8nopqrpsot'()=[0.212; 0.478 cm/s]; $%uvwspt'()=[0.029; 0.442 cm/s], and COM-velocity in AP-ML 

$%8nopqrpsot'()=[0.524; 0.584 cm/s]; $%uvwspt'()=[0.092; 0.311 cm/s] and COM-velocity ML-direction 

$%8nopqrpsot'()=[0.366; 0.408 cm/s]; $%uvwspt'()=[0.017; 0.214 cm/s]).  

 

The effect of the intercept and slope of Subject in the model (e.g., by the goodness of fit including the 

random effects of Subject) can be assessed by comparing the same GLME-model with and without the 

random intercept and slope of Subject. Consequently, it can be tested whether the behavioural response 

(either COP- or COM-velocity) was mainly related to changes of the fixed-effects (e.g., Timepoint) or 

whether the behavioural response was influenced by both fixed and random effects. These auto-

comparisons of the four GLME-models identifies that the Akaike information criterion (AIC), Bayesian 

information criterion (BIC), and log likelihood values of the four GLME-models with the random intercept 

and slope were smaller than the four GLME-models without the random intercept and slope, suggesting 

that the GLME-models with random effects of the intercept and slope better fit the COM- and COP-

velocity data. Furthermore, according the small p-values (p < .001), the null-hypothesis that the COM- 

and COP-velocity response was only caused by fixed effects (e.g., k^l&!^ / <) is rejected, which favours 

the alternative hypothesis that the COM- and COP-velocity were a function of the random effects of 

Subject. Note that although the p-values of the random effect intercept and slope identify a significant 

effect, the alternative hypothesis (kAl&!^ m <) cannot be confirmed based on this statistical test. Finally, it 

also appeared that the four GLME-models with and without the random effect of the Subject slope led to 

lower AIC, BIC, and log likelihood values of the GLME-model with the random slope of Subject and 

significant p-values (p < .001), rejecting the null-hypothesis that the model containing fixed effects and 

random intercept of Subject were only responsible for the COM- and COP-velocity.  
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3.1.2! Robot-controlled balance platform 

Mean COM-velocity and root-mean-squared (RMS) head acceleration in ML-direction were not distributed 

according Gaussians. GLME-models were created containing intercept (#^) and Timepoint (#A) as fixed 

effects and !^ and !A as random effects. The GLME-models of mean COM-velocity and RMS head 

acceleration showed no main effect of Timepoint (Figure 5). Likewise, F-tests showed no significant effect 

of Timepoint for mean COM-velocity and RMS head acceleration.  

A. B. 

  
Figure 5. Grand average across trials and participants of the A: mean centre-of-mass (COM)-velocity and B: 
root-mean-squared (RMS) head acceleration of the balance task at the robotic-controlled balance platform. 
Mean COM-velocity and RMS of the head acceleration are based on the mediolateral sway.     
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3.2! Neuro-physiological results 

3.2.1! Source localisation 

When using the virtual source signals found with DICS-beamforming to estimate CMC with rectified EMG 

signals, the significant !-band peak as found in the CMC-estimates containing the sensor-level EEG 

disappeared. Hence, sensor-level EEG time series were used to estimate CMC. The beamformer results 

based on significant !-power modulation are addressed in Appendix C. 

 

3.2.2!  Continuous oscillatory results of the stable and unstable board  

The pooled CMC spectra between sensor-level mid-central EEG channels (channel Cz) and contralateral 

rectified EMG signals of the shank muscles in the four continuous conditions are presented in Figure 6. 

Significant !-band CMC was observed between the sensor-level EEG (channel Cz) and the contralateral 

tibialis anterior, peroneus, soleus, and biceps femoris. Significance of !-band CMC as estimated with the 

leg muscles was only found in the stance leg while CMC-estimates with the EMG time series of the non-

stance raised leg were not significant. In addition, significant !-band CMC was mostly found between 

channel Cz and the left and right external oblique, rectus abdomis, gluteus medius, longissimus, 

iliocostalis, and deltoid medius. This significant !-band CMC was observed at both pre- and post-

timepoints. CMC-estimates between channel Cz and the remaining muscles (gastrocnemius medialis, 

rectus femoris, vastus lateralis, adductor longus, latissimus dorsi, pectoralis major, trapezius 

descendens, and sternocleidomastoideus) did not show significant !-band CMC. In addition to the 

significant !-band CMC, CMC-estimates between channel Cz and shank muscles of the stance leg showed 

significant x-band CMC with the highest peak around 6 Hz. None of the CMC-estimates between the 

sensorimotor cortex and any of the muscles yielded significant CMC in the #-band.  

 

A. Left stable 

    
B. Right stable 

    
C. Left unstable 
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D. Right unstable 

    
Figure 6. Grand averages across trials and participants of the magnitude-squared cortico-muscular coherence 
spectra between the sensor-level EEG and the rectified EMG of the right and left tibialis anterior and peroneus 
in the A: left stable, B: right stable, C: left unstable, and D: right unstable condition, respectively. Pre-
timepoint is marked in light-blue and post-timepoint in dark-red. Coloured shaded surfaces represent 1 
standard deviation. The horizontal grey lines correspond to the 95% confidence interval and was set at 0.022. 
 

The occurrence of !-band CMC was very heterogeneous across participants independently of the 

modulation across timepoints. Significant&!-band CMC was detected in eight out of the 20 participants, 

which usually were CMC-estimates based on the muscles showing significant !-band CMC at grand 

average level as well. However, as on grand average level, the occurrence of the significance of !-band 

CMC in individuals differed between muscles and tasks.  

 

To statistically evaluate the !-band CMC-modulation as a result of the balance-training program, EEG and 

EMG signals of pre- and post-timepoint were statistically compared using the difference in coherence 

test. Figure 7 shows the CD-test statistic of the CMC-estimates confirming significant !-band CMC as 

evaluated according the difference in coherence test. !-band CMC is significantly modulated between 

pre- and post-timepoint when the CD-test statistic exceeded the significance level of the CD-test statistic. 

None of the CD-test statistics exceeded the significance level. A dependent T-test showed no significant 

differences between the means of !-band CMC at pre- and post-timepoint as well. In this case, !-band 

CMC was obtained by averaging CMC in the frequency range of either 30-40 or 30-60 Hz. In the grand 

average, the !-band CMC in the unstable board condition was higher compared to the stable board 

condition, because !-band CMC of the stable board was not significant while the !-band CMC of the 

unstable board was. However, this was not confirmed by a significant difference between the two 

conditions according the difference in coherence test. 

 

A. Left tibialis anterior B. Left peroneus longus 
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C. Right tibialis anterior D. Right peroneus longus 

  
Figure 7. Grand averages across participants and trials of the extended difference in coherence test based on 
the cortico-muscular coherence (CMC) estimates between the pre- and post-timepoint. Note that it cannot 
solely be deducted from the extended difference in coherence test plots how CMC changed as a function of the 
balance-training program and consequently indicate a significant CMC-increase or decrease. However, this can 
be determined from the CMC-estimates of pre- and post-timepoint. Horizontal green lines at 3.84 correspond to 
95% confidence interval of CD (Rosenberg et al., 1989). 
 

Grand averages of the logarithmically transformed PSD estimates of the EEG channels Cz and CPz and 

rectified EMG of the shank muscles (right and left tibialis anterior and peroneus longus) of pre- and post-

timepoint are depicted in Figure 8. EEG PSD did not modulate post-training compared to pre-training. 

EMG PSD was higher at the shank muscles of the stance leg compared to the non-stance raised leg. 

Furthermore, EMG PSD showed a decrease in the shank muscles of the stance leg across the complete 

frequency range at the post-timepoint compared to the pre-timepoint. This decrease was also observed 

in the other shank muscles (soleus and gastrocnemius medialis).  

 

A. Left stable   
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B. Right stable 

   

   
C. Left unstable   

   

   
D. Right unstable   
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Figure 8. Grand average across trials and participants of logarithmically transformed power spectral density 
estimates of the EEG channels Cz and CPz and the tibialis anterior and peroneus longus estimates according 
the magnitude of the Hilbert transform. Rows correspond to different conditions. Pre-timepoint is marked in 
light-blue and post-timepoint in dark-red. Coloured shaded surfaces represent 1 standard deviation. PSD: 
power spectral density. 
 

3.2.3! Level of muscle fatigue 

Since the duration of experimental protocol was 4 hours which may have physically been demanding for 

the participants, fatigue at a muscular level might have occurred during the course of the protocol. 

Generally, the occurrence of muscle fatigue results in changes of amplitude- and phase-based measures 

of the surface EMG, or more precisely, the mean EMG amplitude increases while the median frequency of 

the EMG decreases (Lippold et al., 1960). Mean EMG amplitude and median frequency of the shank 

muscles of the stance leg contributing to significant CMC (see Figure 6) were estimated for each 

condition and timepoint. Means across pooled trials and participants in every condition were statistically 

compared using a dependent T-test with Timepoint as factor. This dependent T-test yielded no significant 

differences in the median frequency with Timepoint as factor in any of the muscles showing significant 

CMC (p > .05). Furthermore, the mean peak amplitude did not increase significantly in any of the 

muscles. Figure 9 illustrates the grand average across trials and participants of EMG amplitude and 

median frequency of the right and left tibialis anterior in the right- and left-legged conditions, 

respectively, as a typical example that there were no significant changes due to muscle fatigue. 

 

A. B. 

  
Figure 9. Grand average across trials and participants of the A: median frequency and B: mean peak 
amplitude of the left tibialis anterior in the ‘Left stable’ and ‘Left unstable’ and the right tibialis anterior in the 
‘Right stable’ and ‘Right unstable’ conditions.  
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3.2.4! Event-related results of the robot-controlled balance platform 

Figure 10A shows a typical example of the perturbation time series on the robot-controlled balance 

platform. Considering the fact that the current study is the first study using the Haptic Master combined 

with the robot-controlled balance platform, the test-retest reliability of the balance platform was verified. 

Correlation coefficients of the imposed board angles were ranged from 0.981 to 0.998 between 

participants and from 0.983 to 0.997 between timepoints, implying that perturbation magnitude was 

equal among participants. The grand average of the rectified board angle of the robot-controlled balance 

platform at pre- and post-timepoint as a function of time is presented in Figure 10B. The board angle 

was positioned at the equilibrium angle of ±0°. During every perturbation, the board angle approached 

its maximal value, |3°|, after ±450 ms followed by an exponential decay to the equilibrium angle of ±0°, 

which is illustrated in the time window between -400 and 0 ms before the perturbation onset. When the 

board angle approached its equilibrium, the subsequent perturbation was imposed.  

 

A. B. 

  

Figure 10. A: An example of the time series of the position-based perturbations as imposed during the robot-
controlled balance platform task. In the current study, the board angle of the balance platform has directly 
been manipulated instead of manipulating another mechanical quantity (e.g., moment of the board axis). The 
upper and lower plots illustrate the requested and actual perturbations time series, respectively. B: Grand 
average of the time-locked rectified board angle. Time = 0s corresponds to perturbation onset. Pre-timepoint is 
marked in light-blue and post-timepoint in dark-red. Shaded surfaces correspond to 1 standard deviation. 
 

The left panels of Figure 11 depict the grand average time-locked data of channel Cz, the accelerometer 

at the top of the head, and the right and left rectified tibialis anterior as a result of the imposed 

perturbations on the robot-controlled balance platform. The potential changes at the channels of the 

sensorimotor cortex (Figure 11A) after perturbation onset may have been due to movement artefacts 

(e.g., the result of head movements). In order to exclude that these remarkable potentials between 200 

and 400 ms after perturbation onset were artefacts, an accelerometer was attached at top of the EEG-

cap between the channels Cz and CPz measuring the acceleration of the head in ML-direction (Figure 

11B). The correlation coefficient between the time-locked activity of channel Cz and the ML-acceleration 

of the accelerometer of 9,900 perturbations (330 perturbations per time-point x 2 timepoints x 15 

participants) yielded 0.05. Muscular responses (Figure 11C and D) can be observed in the right tibialis 

anterior while the left tibialis anterior did not change as a response to the perturbations. Note that the 

participant was consistently balancing on the right leg during this task.  
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A. Channel Cz   

   
 

B. Accelerometer 

  

   
 

C. Right tibialis anterior 

  

   
 

D. Left tibialis anterior 

  

   
Figure 11. Grand averages of the time-locked data (e.g., ERP) and time-frequency relative power 
representations at A: channel Cz, B: medial-lateral acceleration of the head, C: rectified right tibialis anterior, 
and D: rectified left tibialis anterior averaged across 330 perturbations per timepoint and 15 participants. Time 
= 0s corresponds to perturbation onset. In the left panels, pre-timepoint is marked in light-blue and post-
timepoint in dark-red. Shaded surfaces correspond to 1 standard deviation. Note that participants were 
balancing on their right leg in this condition.  
 

The middle and right panels of Figure 11 depict the relative power TFRs of both pre- and post-timepoint. 

The relative power was obtained by dividing every TFR-element with the averaged power of -200 till 0 

ms. The cortical sensorimotor channels revealed an upregulated x-band power and suppression of the 

high #-band (±25-30 Hz) and low !-band (±30-35 Hz) power within the time window of 200 till 400 ms 
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(Figure 11A). Following the low correlation coefficient between the time-locked time series of the 

sensorimotor channels and accelerometer, the relative x-band power modulation cannot be observed in 

the TFR of the accelerometer either, revealing that the cortical ERPs were not due to movement artefacts 

(Figure 11B). The cortical sensorimotor channels showed a downregulation of relative #- and !-band 

power within the time window of 200 till 400 ms after perturbation onset. The down-regulated high #-

power in the sensorimotor channels likely reveal local event-related desynchronization preceding 

movement initiation, especially, since increased x-band activity in the right tibialis anterior was observed 

after 450 ms (Figure 11C). The relative x-band power increased as observed in the right tibialis anterior 

(stance leg) corresponds to the ERP changes of the right tibialis anterior after 200 ms. On the contrary, 

no relative x-band power modulation was detected in the left tibialis anterior (raised leg) (Figure 11D) as 

the ERP of the left tibialis anterior did not change either. The other pairs of homologous shank muscles 

(e.g., peroneus, soleus, and gastrocnemius medialis) showed comparable findings regarding the ERP- 

and relative power TFR-courses. In addition, ERPs and relative power TFRs also presented equivalent 

characteristics in terms of the modulation timing of the frequency content.  

 

Figure 12 illustrates the grand average across trials and participants of the cortico-muscular time-

frequency coherence representations between the mid-central EEG channel Cz and the shank muscles 

(tibialis anterior, peroneus longus, gastrocnemius medialis, and soleus) at both timepoints and on both 

legs. Channel Cz was selected as topological EEG plots revealed (most) significant CMC around this 

channel for the four shank muscles. The TFRs show !-band CMC centred around the 40 Hz in the stance 

leg (Figure 12A). This increased !-band CMC was not present in the non-stance leg (Figure 12B), which 

was also observed in the stable and unstable balance conditions. The !-band CMC-magnitude in the 

stance leg at the post-timepoint was lower, which is also visible in the TFRs in which CMC at post-

timepoint is subtracted of CMC at pre-timepoint (Figure 12E). CMC-magnitude of the non-stance leg at 

the post-timepoint was comparable to the pre-timepoint (Figure 12D) and CMC was not modulated 

between pre- and post-timepoint (Figure 12F). CMC-modulation in both legs was statistically evaluated 

using cluster-based permutation tests with a dependent T-test. Resulting significant T-statistics of both 

stance and non-stance leg are visualised in Figure 12G and H, supporting the expectation that !-band 

CMC in the stance leg was significantly lower at the post-timepoint than at pre-timepoint. !-band CMC-

modulation in the non-stance leg was not significantly different.  

A. B. 

  
 

 

 

 



Research Master - Final Report  
 

 29/48 
 

C. D. 

  
E. F. 

  
G. H. 

  
Figure 12. Grand averages across trials and participants of the cortico-muscular time-frequency coherence 
representations between the mid-central EEG channel Cz and the average of four shank muscles (tibialis anterior, 
peroneus longus, gastrocnemius medialis, and soleus) at the pre-timepoint on the A: right and B: left leg and 
post-timepoint on the C: right and D: left leg. E-F: Grand average of the difference in cortico-muscular time-
frequency coherence presentations between pre- and post-timepoint. CMC at post-timepoint was subtracted from 
CMC at pre-timepoint. G-H: (Significant) T-values of the CMC-modulation between the pre- and post-timepoint for 
the right and left leg. Significant T-values are opaque.  
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3.3  Correlative analysis of neurophysiological and behavioural adaptations 

The mean COP- and COM-velocity on the stable and unstable board were selected for this correlative 

analysis as behavioural variable. CMC of the tibialis anterior (TA) and peroneus longus (PN) was 

converted into a scalar value by averaging !-band CMC (35-40 Hz) and pooling five trials of each 

timepoint. Figure 13 reveals the scatterplots with Pearson’s correlation coefficients and significance level 

of the mean COP-velocity and CMC(-modulation) (Figure 13A) and the mean COP-velocity and CMC(-

modulation) (Figure 13B) of the 20 participants. Significant Pearson’s correlation coefficients identified a 

weak and weak-to-moderate positive relationship between mean COM-velocity and !-band CMC as 

estimated with the tibialis anterior at pre- and post-timepoint, respectively. None of the Pearson’s 

correlation coefficients were not significant between CMC-modulation and behavioural changes as a 

result of the balance-training program (right panels). Furthermore, no significant correlation coefficients 

were observed between mean COP-velocity and CMC. In the robotic-controlled balance platform, none of 

the Pearson correlation coefficients showed a significant correlation between CMC and mean COM-

velocity and CMC and RMS of the head acceleration. To estimate correlation coefficients, perturbations 

and trials were pooled for participants and timepoints.  

A.  

B.    

Figure 13. A: Scatterplots including least-squares line (green lines) and Pearson’s correlation coefficients (r) 
between A: the mean COP-velocity and CMC(-changes) and B: the mean COM-velocity and CMC(-changes) as 
a function of the balance training program. Cz: EEG channel Cz; TA: tibialis anterior; PN: peroneus longus.  
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4! Discussion 

The efficacy of learning to balance unilaterally for a short period has been shown at a behavioural level 

though the neuro-physiological mechanisms underlying the improvements are currently not well 

understood. Cortico-muscular oscillations in the !-band (30-60 Hz) can play a pivotal role during 

dynamical tasks (e.g., postural control). Here, we specifically targeted how !-band cortico-muscular 

coherence (CMC) changes as a result of balance-training. It was hypothesized that !-band CMC 

modulates during this period of short-term motor learning and that these changes in !-band CMC 

correlate with changes at the behavioural level. The main findings are that significant !-band CMC with a 

peak around 40 Hz was found in the stable, unstable, and robot balance tasks at pre- and post-

timepoint. !-band CMC was not consistently modulated across the balance-training program among the 

three balance tasks. While the perturbation-induced !-band CMC decreased, the continuous !-band CMC 

did not change as a result of short-term motor learning. As hypothesized, the mean COP-velocity 

decreased significantly across the balance-training program. Furthermore, the decrease in COM-velocity 

was significantly higher when participants balanced on the unstable board than on the stable board. 

Finally, there were weak-to-moderate positive relationships between the !-band CMC and mean COM-

velocity.  

 

4.1! Cortico-muscular !-band oscillations in motor control 

Previous studies have described the existence of !-band CMC related to motor control, specifically 

dynamical tasks (Mehrkanoon et al., 2014; Mendez-Balbuena et al., 2011; Omlor et al., 2007; Petersen 

et al., 2012). !-band CMC as currently presented with a peak around 40 Hz likely corresponds to the 

Piper rhythm (Brown et al., 1998). The Piper rhythm describes the tendency of cortico-spinal neural 

circuits to fire phase-locked at a frequency around 40 Hz in strong isometric and slow-dynamical tasks 

(Brown, 2000). This cortico-spinal communication may occur from the cortical areas along fast pyramidal 

tracts (e.g., mono-synaptic neural pathways) to the motor-pool units (Lemon, 2008). Although the Piper 

rhythm has rarely been observed in human motor control, the here-reported significant !-band CMC may 

be ascribed to the Piper rhythm, since it peaked between 35 and 41 Hz (Salenius et al., 1996). 

Furthermore, the Piper rhythm may originate in the cortex from the midline of the sensorimotor cortex in 

dynamical lower leg contractions (Salenius et al., 1997) as shown by the CMC-estimates between the 

sensor-level EEG (channel Cz) and rectified EMG of the shank muscles (tibialis anterior and peroneus) in 

the current study. It is unlikely that the significant !-band CMC(-modulation) was the result of muscular 

fatigue, since the mean peak amplitude and median frequency of the EMG signals did not increase and 

decrease, respectively, between pre- and post-timepoint (Lippold et al., 1960).  

 

Significant !-band CMC was only found in the shank muscles of the stance leg in both continuous and 

perturbation-induced balance tasks, while significant !-band CMC in the non-stance, raised leg was 

lacking. The upregulation in the cortico-spinal drive was purely related to the increased unilateral 

synchronized activity between the unilateral sensorimotor cortex (e.g., the M1-cortex) and the contra-

lateral shank muscles of the stance leg. The ipsi-lateral synchronized activity from one hemisphere to the 

shank muscles of the stance leg was not present. The same held for this hemisphere and the shank 

muscles of the non-stance leg. Significant cortico-muscular !-band oscillations in the non-stance, raised 

leg may not be present because raising and holding one leg off the ground mainly leads to static 

isometric contractions of the shank and thigh muscles in this leg (Torres-Oviedo and Ting, 2010). These 
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isometric contractions possibly limit the generation of cortico-muscular !-band oscillations as the 

existence of this type of oscillations is more profoundly expressed in dynamical tasks (i.e. non-isometric 

tasks) (Mendez-Balbuena et al., 2011). On the other hand, one could expect that the isometrically 

contracting muscles in the non-stance leg may trigger cortico-muscular #-oscillations as these have been 

associated with the maintenance of a certain sensorimotor state (Mehrkanoon et al., 2014). However, 

other studies show that no #-oscillations can be observed below a certain force threshold (Gross et al., 

2005; Perez et al., 2012), suggesting that the isometric contractions as made in the non-stance leg were 

simply too weak to generate #-oscillations between the sensorimotor cortex and shank muscles of the 

non-stance leg. Furthermore, no ‘precision’ was required to raise the leg as this generates cortico-

muscular #-oscillations as well (Kristeva et al., 2007). The distinguished function of the stance and non-

stance leg is in line with the behavioural findings of another study, which reported a positive and 

negative covariance for the stance and non-stance leg, respectively, relative to the other segments of 

the body (van Dieën et al., 2015). While the occurrence of !-band CMC with muscles of the lower 

extremities depends on the leg, CMC-estimates based on more proximal muscles (e.g., external oblique, 

gluteus medius and iliocostalis) tended to show bilateral rather than unilateral !-band CMC. These 

muscles have been associated with the dynamical sway rather than static contractions during postural 

control (Klous et al., 2011). The presence of !-band CMC estimated with the proximal muscles and 

stance-leg muscles, and the absence in the muscles of the non-stance leg is also consistent with the 

difference in positive and negative covariance in the COM-path for the stance and non-stance leg relative 

to the other parts of the body. Besides the !-band CMC, significant x-band CMC was observed between 

4-8 Hz in the continuous stable and unstable board tasks. x-band CMC has been associated with 

attention (modulation) during the transient motor learning phase in precision tasks (Hori et al., 2013). 

Despite the fact that several studies indicated a phase-amplitude coupling between the x- and !-band in 

the cortical regions (Canolty et al., 2006; Fries, 2009), this coupling has not been observed as cortical-

muscular coupling in human motor control. Speculatively, the significant x-band CMC might reflect 

attention, since the unilateral balance tasks were quite demanding, however, we cannot exclude that 

these oscillations emerged from movements artefacts, for example, physiological tremors (Raethjen et 

al., 2002).  

 

Although significant !-band CMC was found, we attempted to improve the CMC-estimates by 

dimensionality reduction of the EMG through multivariate analysis. The main reason to decompose the 

EMG time series was to increase the signal-to-noise ratio of the CMC-estimates. Multivariate 

decomposition of the EMG time series was performed with non-negative matrix factorization (NNMF) (Lee 

and Seung, 2001) (results have not been presented in this thesis), as the EMG was rectified and NNMF is 

constrained to only have non-negative values (Cheung et al., 2005). The results of the current study, 

however, showed that the decomposition of EMG time series led to a loss of the amplitude- or phase-

based variance that was responsible for the characteristic !-band CMC peak as observed in CMC-

estimates with the non-decomposed EMG. This may be the result of the fact that the first modes of NNMF 

only include the variance that was associated with bursts of EMG activity, and, therefore, a high 

amplitude. These bursts of EMG activity are quite common in unilateral balance tasks (van Dieën et al., 

2015). Coherence may significantly be affected by these bursts of EMG activity (Bortel and Sovka, 2006) 

as they largely contribute to the amplitude-based (i.e. power) normalisation of the coherence (Conway et 

al., 1995). Likewise, the estimation of CMC between EEG and NNMF-modes that merely consists of EMG 

bursts will result in lower coherence values.  
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4.2! Cortico-muscular !-band oscillations in motor learning 

Time-locked !-band CMC in the perturbation-induced balance task was significantly decreased in the 

stance leg across the balance-training. This !-band decrease was observed from -0.4s before till 0.6s 

after the mechanical perturbation. The fact that !-band CMC is constantly modulated rather than event-

related (e.g., the dynamical phases of mechanical perturbations) may be the consequence of the rapid 

imposition of consecutive perturbations (±0.8 Hz) and the short time periods at the equilibrium position 

(±100 ms) between consecutive perturbations. To be able to find an event-related&!-band CMC response 

to the perturbations and relate the !-band CMC to different phases of the perturbations a longer period in 

the equilibrium position is required.  

 

The observed !-band CMC decrease compromises a lower phase-locked synchronization in the cortico-

spinal drive as a result of short-term balance learning. Despite the decline in the !-band CMC in the 

perturbation-induced balance task, no time-locked !-band power-modulation was observed in the 

sensorimotor cortex and shank muscles. The decline in !-band CMC with no power-modulation suggests 

a phased-based modulation with amplitude-constancy of these neural oscillations. Similar findings of 

amplitude-independency in cortico-spinal connectivity estimates have been found in static response tasks 

by contrasting coherence and phase synchronization for #-oscillations (Van Wijk et al., 2009). However, 

the interpretation of the cortico-muscular !-oscillations is different from the #-oscillations (Kopell et al., 

2000). It has been shown that !-band CMC was associated with corrections to sensory prediction errors 

(Schoffelen et al., 2005). Mehrkanoon and co-workers (2014) found a higher dual-band CMC in the y- 

and !-band after trials in which a compensation was required to correct for manual force overshoot. As 

proposed by these authors, the y-band CMC may originate from the visual feedback that was given to 

the participants in that study. Other studies consisting of paradigm including a dynamical task and visual 

feedback also observed dual-band coherence (Buffalo et al., 2011; Van Wijk et al., 2009). Since no 

visual feedback was provided to the participants in the current study this may explain why no y-band 

CMC was observed.  

 

We were not able to show that the perturbation-induced !-band CMC was associated with movement 

corrections as the time-locked excursion in the ML-direction of the right shank markers (heel, knee, and 

hip) did not correspond to the time-locked !-band CMC-changes. Furthermore, no significant Pearson’s 

correlation coefficients between !-band CMC and behavioural data were observed, suggesting that the 

decrease in !-band CMC was not associated with a change at a behavioural level. This lack of significant 

correlations may partially be the result of the inter-individual differences as found in both !-band CMC 

and mean COP- and COM-velocity. Inter-individual differences at behavioural level were found in the 

initial unilateral balance performance and response to the balance-training program. However, the 

significant Pearson’s correlation coefficients only identified weak-to-moderate relationships between !-

band CMC and mean COP- and COM-velocity yielding that inter-individual differences at a neuro-

physiological level did not correspond to the inter-individual differences at a behavioural level. Previous 

studies found strong positive correlations between cortico-muscular oscillations and static task 

performance (Ushiyama et al., 2017). However, these studies examined the cortico-spinal 

synchronization in the #-band. The modulation of !-band CMC in relation to short-term motor learning 

seems to be different from #-band CMC-modulation as cortico-spinal #-band oscillations are usually 

upregulated after motor learning and are correlated to improvements at behavioural level as well (Larsen 

et al., 2016; Mendez-Balbuena et al., 2011; Perez et al., 2006). This suggests a different functional role 

for #- and !-band CMC during motor learning as found in a modelling study as well (Kopell et al., 2000). 
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The upregulation of #-band CMC has directly been associated with an increased neural firing behaviour 

via mono-synaptic loops along the cortico-spinal tract (Perez et al., 2006) as a result of reorganization of 

the cortical representations (Conway et al., 1995). On the contrary, !-band CMC-modulation is most 

likely associated with a lower cortico-spinal excitability describing a lower firing rate along fast pyramidal 

pathways due to motor learning.  

 

While the perturbation-induced !-band CMC decreased, the continuous !-band CMC did not change after 

balance-training. A decrease was found in the mean COP-velocity suggesting modulation of neural 

structures other than the cortical areas. The involvement of sub-cortical neural structures (e.g., brain 

stem and spinal level) in postural control has already been shown based on the latency of reactions to 

postural disturbances (Jacobs and Horak, 2007; Taube et al., 2006). The sub-cortical and spinal circuits 

adapt to changing requirements during balance training by adjusting reflex behaviour (Taube et al., 

2008). Future research may address the modulation of intermuscular coherence as it is believed that this 

type reflects the synchronization level at sub-cortical and spinal levels (Boonstra et al., 2009).   

 

The different findings in !-band CMC-modulation between the continuous and perturbation-induced tasks 

are likely the result of task differences. While the perturbation-induced task was related to the 

anticipation to mechanical perturbations, the continuous tasks did not require anticipatory behaviour. 

The first task requires repetitive reactive compensation in order to maintain balance after the 

perturbations, whereas the latter does not. Since the mechanical perturbations had a consistent 

magnitude of +3° or -3° and were imposed at a rate of ±0.8 times per second, the variability between 

perturbations merely was the variable time of ±100 ms between perturbations and the direction, either 

clockwise or counter clockwise. Consequently, the predictability of the perturbations was high. This high 

predictability may partially be associated with the lower !-band CMC, because a higher CMC in the&!-

band may be the result of an increased probability on sensory prediction errors (Schoffelen et al., 2011). 

As participants knew what to expect when they were balancing unilaterally on the robot-controlled 

balance platform for the second time (e.g., at post-timepoint), there may have been fewer sensory 

prediction errors, for example, a decreased proprioceptive feedback (Dietz et al., 1992). The lower 

inconsistency between the expected and real balance state would then lead to a decrease in !-band CMC. 

On the contrary, the continuous tasks contained a lower predictability as participants could balance freely 

and were not constrained to anticipate on mechanical perturbations. This lower predictability may result 

in an equal probability in sensory prediction errors at pre- and post-timepoint and hence no modulation 

of !-band CMC.  

 

4.3! Behavioural results 

At the behavioural level, mean COP-velocity decreased in the continuous tasks significantly across the 

balance-training program. No significant main effect of Timepoint was found in case mean COM-velocity 

was the predictor variable. However, a significant two-way interaction of Timepoint x Board was found, 

meaning that the decrease of mean COM-velocity was higher for the unstable board than for the stable 

board. The behavioural modulation across a short-term balance-training program is in line with findings 

by van Dieën et al. (2015), who found a decrease in COM-path (mean COM-velocity times duration of the 

trial) across 30 minutes of unilateral postural training. However, the current study was not able to show 

a significant decrease in mean COM-velocity. The mean COM-velocity as estimated might be an 

underestimation of the mean COM-velocity based on full-body kinematics (van Dieën et al., 2015). Here, 
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the mean COM-velocity was estimated between the left and right SIPS-markers, which can be considered 

as a rough estimate of the COM-sway. However, possible movements of the lower and upper limbs which 

highly contribute to the maintenance of balance are neglected, (Horak and Nashner, 1986). Van Dieën 

and colleagues found a significant decrease in COM-path using 17 markers to estimate the COM. One 

may expect that if the COM had been estimated based on the full-body kinematics represents the actual 

COM more accurately and gives a higher difference in mean COM-velocity between pre- and post-

timepoint.  

 

The mean COM-velocity and RMS of the head acceleration in the perturbation-induced task did not 

change across the balance-training program, which was not expected based on the decrease in !-band 

CMC. This discrepancy between the neurophysiological and behavioural level may be due to the fact that 

the mean COM-velocity between the right and left SIPS and RMS of the head acceleration do not 

operationally represent the change of !-band CMC between the sensorimotor cortex and shank muscles.   

 

4.4! Future research 

Future steps may consist of a beamforming procedure that considers both amplitude- and phase-based 

modulation between the cortex and muscles, for example, the estimation of the spatial filters based on 

maximal CMC or maximal CMC-modulation across the balance-training program. De Vries et al. (2016) 

searched cortical areas that show maximal CMC, decomposed the corresponding virtual source signals 

with singular value decomposition and found significant #-band CMC in a bimanual task. In this thesis, 

the spatial filters for the beamforming procedure were based on the !-band power modulation of all EEG 

channels, which is only based on amplitude modulation. Using the consecutive virtual source signals of 

each hemisphere to estimate CMC with the contralateral muscle activity abolished the significant !-band 

CMC around 40 Hz (Appendix C) and yielded no significant !-band CMC-modulation as a result of balance 

training. Therefore, spatial filters that are directly related to the cross-spectral interactions between EEG 

and EMG (e.g., CMC) may improve the source localisation and the estimation of virtual source signals. 

However, the computation of the DICS-beamformers that optimize CMC was beyond the scope of this 

thesis and will be addressed in future research.    

 

No significant correlations were present between the changes of !-band CMC and mean COP- and COM-

velocity, hampering the interpretation of CMC-modulation. Also, this might indicate that significant !-

band CMC does not reflect a crucial aspect of motor learning. Future work might clarify the interpretation 

of the CMC-modulation by addressing CMC-directionality and questions whether both sensory- and 

motor-related pathways are equally contributing pre- and post-training. Coherence (e.g., normalized 

cross-spectral density) is inadequate to estimate directionality, which is a generally known disadvantage 

of using linear correlations (Zalesky et al., 2012). The directionality of CMC has been reviewed by Baker 

(2007) who showed the occurrence of CMC in both feedback and feedforward neural pathways in motor 

control (Baker, 2007). During motor learning in postural control, however, re-weighting of sensory 

ascending and motor descending signals occurs compromising to the specific requirements to maintain 

balance (Sober and Sabes, 2003). For example, the use of different sensory input types (i.e. visual, 

vestibular, and proprioceptive) is up- or down-regulated during the short-term learning period of a novel 

unilateral balance tasks (Davis et al., 2011). In the initial learning phase, proprioceptive inputs are 

essential to control unilateral balance while the importance of the visual and vestibular feedback 

increases across the learning period (van Dieën et al., 2015). It should be mentioned that here the 
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contribution of visual feedback may be limited as participants were constrained to look at a white cross 

on the wall to reduce EEG artefacts. For the results of the present study, it could have been expected 

that CMC-directionality may modulate, since local muscular synchronization (e.g., power) changed, 

reflected by a decreased PSD of the EMG. However, it should be taken into account that the decrease of 

PSD of the EMG my also reflect a lower recruitment of sub-cortical or spinal levels. To investigate the 

CMC-directionality, the cortico-muscular phase-locked causality should be estimated, which can be 

determined by using the phase-slope index (Nolte et al., 2008) or partial directed coherence (Schnitzler 

and Gross, 2005). The application of the phase-slope index and partial directed coherence to the current 

data may enhance the value of the results as found in this thesis and renders the interpretation that !-

band CMC is involved in full-body dynamical tasks as challenging postural control tasks. 

 

Finally, the phase-locked synchronization between neural populations is not merely limited to cortico-

muscular interactions but can also be extended to cortical populations in different brain areas (e.g., 

cortico-cortical coherence) and different motor-unit pools (e.g., intermuscular coherence). Although 

cross-spectral coupling between these neural structures has been investigated in paradigms including 

CMC during motor learning (e.g., Hori et al., 2013; Pizzamiglio et al., 2017), the phase-locked 

modulation in relation to short-term learning is poorly understood. The extension of the current study 

with both EEG-EEG and EMG-EMG coherence may clarify whether the phase-locked modulation is limited 

to the cortical level or whether changes occur at the sub-cortical and spinal level as well (Boonstra et al., 

2009). The decrease in !-band CMC in the perturbation-induced task may be accompanied by increases 

in inter-muscular coherence at lower frequencies suggesting higher synchronization between sub-cortical 

and spinal structures or between different motor unit pools (Danna-Dos-Santos et al., 2014). The 

extension with EEG-EEG and EMG-EMG coherence is especially interesting, since the current study shows 

behavioural improvements across the short-term learning period while the CMC on its own seems not 

sufficient to explain these behavioural improvements.  
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5! Conclusions 

The results of the present study highlight the existence of cortico-muscular !-band oscillations in novel 

unilateral surface stability tasks. These cortico-muscular !-band oscillations correspond to the Piper 

rhythm. Perturbation-induced !-band cortico-muscular coherence responses as a result of the short-term 

balance-training program decreased while the continuous !-band cortico-muscular coherence did not 

decrease suggesting task-dependent phase-locked modulation during unilateral balance tasks. The 

decrease !-band cortico-muscular coherence in the perturbation-induced task might be the result of the 

rhythmic occurrence of consecutive perturbations. The lack of the significant !-band cortico-muscular 

phase-locked modulation in the continuous tasks suggests that the behavioural balance improvements 

(e.g., lower media-lateral postural sway) were not the result of changes in neural oscillations as derived 

from cortical areas. Nevertheless, the present results support cortical involvement in sensorimotor 

control during full-body surface stability tasks, because of the significant !-band cortico-muscular 

coherence. 
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Appendix A 

 

The aim of these pilots of Appendix A was to investigate whether unilateral balance tasks actually result 

in a synchronized activity between cortical regions and shank muscles. During this particular pilot study, 

the participant had to perform unilateral surface stability tasks on the same balance board as used for 

the current study. Simultaneously, 64-channel EEG was recorded with surface EMG activity of four shank 

muscles: the left and right tibialis anterior (TA) and peroneus longus (PN). However, there was no 

balance-training program included in the protocol. The results of this pilot study showed CMC around 40 

Hz between the averaged EEG signals of the sensorimotor cortex (C1-C6, FC3-FC4, and CP3-CP4) and 

the rectified surface EMG signals of the TA and PN in the stance leg, while this this CMC peak is not 

present in the non-stance raised leg. Figure 14A illustrates a unilateral condition at the left leg and the 

Figure 14B above was a unilateral condition at the right leg. The obtained CMC peak around 30-60 Hz is 

consistent with studies that investigated other dynamical tasks as walking and force output generation, 

and is called the Piper rhythm, which has been associated with dynamical tasks. The results of this pilot 

study highlighted the existence of cortico-muscular coherence (CMC) within the !-frequency band (30-60 

Hz). 

 

A. B. 

  
Figure 14. Individual coherence spectra between averaged EEG signals overlying the motor cortex (C1-C6, 
FC3-FC4, and CP3-CP4) and the rectified EMG signals of the tibialis anterior and peroneus of the dominant leg. 
TAR: right tibialis anterior, PER: right peroneus, TAL: left tibialis anterior, PEL: left peroneus. A: the dominant leg 
is the left leg (lower left graph). B: the dominant leg is the right leg (upper right graph). 
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Appendix B 

 

Since the robot-controlled balance platform had not been used before, a pilot study was performed to 

investigate the cortical responses when consecutive perturbations were imposed. Therefore, the aim of 

this pilot study was two-fold: (1) to investigate how many trials should be performed perturbations 

should be imposed in order to get an accurate estimate of the ERP and (2) to investigate the response of 

the sensorimotor cortex. During this pilot, the participant performed 10 trials in which 38 perturbations 

were imposed in each trial. The participant was asked to anticipate adequately on the imposed 

perturbations and to stabilize the COM to the pre-perturbation position. 64-channel EEG was recorded 

when perturbations were imposed. Besides to the standard EEG-cleaning as described in paragraph 2.4 

(see Methods – Data analysis), EEG time series were time-locked from 0.40 s before and 0.60 s after the 

perturbation and pooled within a trial. Time-locked evoked potentials of pooled perturbations within a 

trial and the grand average are illustrated in Figure 15.  

 

 
Figure 15. Individual time-locked EEG response at the CPz-channel as obtained during the pilot. Onset 
represents the start of the perturbation imposition. The upper panel illustrates the pooled perturbations 
of 10 trials that all consists of 38 perturbations. Shaded surface corresponds to 1 standard deviation. 
Note that the limits of the y-axis of both panels are different. The lower panel corresponds to the grand 
average of the 380 perturbations (10 trial x 38 perturbations). Shaded surface corresponds to 1 standard 
error of the mean.  
 

EEG time series of the motor cortex were transferred to the frequency domain according a multitaper 

convolution method with a Hanning-taper as implemented in FieldTrip. Consequently, time-frequency 

representations (e.g., time-frequency power plots) were constructed. Time-frequency power plots of the 

sensorimotor cortex show frequency power modulation of the x- and z-frequency band (0.5-4, and 4-8 

Hz, respectively) (Figure 16). This modulation of the z and x band corresponds to the N200- and P300-

peak of Figure 15. 
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Figure 16. Grand average time-frequency representation (TFR) at the CPz-channel. TFR describes the average 
of 380 perturbations: 10 trials each consisting of 38 perturbations. This TFR represents the absolute power (in 
dB) as observed at channel CPz with a baseline between -0.3 and -0.1s. Time = 0s indicates the perturbation 
onset as imposed by the Haptic Master. Note that the EEG data has been bandpass filter between 2 and 30 Hz 
before construction of the TFR. 
 
To determine the number of perturbations after this pilot to include in the experimental protocol a 

bootstrapping method was applied. 95% CI was estimated based on the random selection of the time-

locked potential at Cz of 2-380 perturbations. This estimation procedure of the random selection of 

potentials was repeated for 5,000 times. The resulting exponential decay showed that the imposition of 

320 perturbations would lead to an increase of <5% of the 95% CI [-0.250; 0.287 µV] compared to the 

estimated 95% CI of the grand average ERP based on 380 perturbations [-0.240; 0.276 µV]. 
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Appendix C 

 

Reconstruction of source signals 

This appendix contains the results of the DICS-beamforming procedure. Figure 17 shows orthogonal 

anatomical maps as a result of the DICS-beamforming. Recall that this DICS-beamforming procedure 

was based on searching for the cortical area revealing the (most) significant !-power modulation 

between pre- and post-timepoint. The MNI-coordinates of these focal cortical sources for right and left 

hemisphere were equal to [3.0; 8.0; 71.0] cm and [-8.0; 11.0; 64.0] cm, respectively. MNI-coordinates 

are located in the bilateral Brodmann’s area 6 and correspond to the right and left supplementary motor 

areas. Robustness of the significant cortical sources was checked by repeating the cluster-based 

permutation test 20 times for 19 (out of 20) participants excluding one participant each iteration. MNI-

coordinates were converted to CTF-coordinates to obtain the corresponding spatial filters. To extract the 

virtual source signals, spatial filters were matrix multiplied with channel-level EEG. These virtual source 

signal yielded three signals, and were decomposed with singular value decomposition to a single signal 

that explains the most variance.  Consequently, the right and left hemispheric virtual source signals as 

found with singular value decomposition were used to estimate CMC with the contralateral rectified EMG.  

 

 

A.!  
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B.!  
Figure 17. Grand average of the orthogonal anatomical maps of the A: right and B: left hemisphere. 
Highlighted small yellow-coloured areas mark significant T-values containing the cortical sources where 
maximal !-power modulation was detected between pre- and post-timepoint. DICS-beamformers were 
frequency locked in the frequency band of 30-60 Hz. 
 

The CMC-estimates between the ‘beamformed EEG’ and the rectified EMG signals of the shank muscles 

highlighted two important phenomena (Figure 18). Firstly, the !-band CMC-peak around 40 Hz 

disappeared, which has been observed in the CMC-estimates based on the sensor-level EEG time series. 

Furthermore, no modulation of !-band CMC between pre- and post-timepoint was observed according the 

difference in coherence test. As mentioned in Discussion, future research will estimate the spatial filters 

of the DICS-beamformers based on the !-band CMC-modulation across the balance-training program 

directly instead of the cortical !-power modulation as used in the current analysis.  

  
Figure 18. Grand average of CMC-estimates between ‘beamformed’ EEG and right and left tibialis anterior in 
the right and left unstable condition, respectively. DICS-beamforming was based on the identification of the 
anatomical sources contributing significantly to cortical !-power modulation across the balance-training 
program.  
 




