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Abstract 
 
Disease severity of the seminal neurodegenerative diseases including Alzheimer’s disease 
(AD) and Parkinson’s disease (PD) is associated with a progressive disruption of functional 
brain activity as compared to the healthy brain. Recent studies have reported a significant 
role of cortical hubs in this observed altered brain activity, e.g. hubs are targeted which 
thereby affects the brain network and its phase synchronisability in AD. However, the 
effect of the number of hubs in networks with respect to network dynamics, e.g. 
synchronisation, is poorly understood. In this study I present a preferential rewiring 
method to increase the number of hubs in a sparse non-growing network of coupled 
Kuramoto phase oscillators; the latter represents oscillatory activity in distinct brain 
regions. To gain insight into the effect of (changes in) the number of hubs, quantified 
through hubness 𝐻, on network synchronisability, quantified through phase divergence 𝑟, I 
adopted a system identification approach. I found that 𝐻 has a profound positive effect on 
network synchronisability and hubness is a requisite to obtain global phase synchronisation 
in sparse networks. Furthermore, for low-to-medium 𝐻  I observed a critical transient 
regime of locally stable modes of partial synchronisation, indicating that hubness is a 
critical factor in inducing multistability. These results suggest that in sparse networks such 
as the functional brain an optimal hubness exists with respect to the maximal functional 
repertoire and any deviation from this optimum could have great impact on the 
multistability of the network. To test its validity on empirical data I applied the same 
approach to resting-state MEG times-series of PD patients. Although my numerical 
simulations appear clear-cut predictors of effects of hubness in synchronisation networks, 
the application on the PD data should be considered preliminary. While in its infancy, I do 
consider my approach a promising future diagnostic and predictive tool.  
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Introduction 

Functional networks of the human brain cortex are typically defined through 
synchronisation patterns. This is of specific interest because synchronisation of brain 
activity appears to alter due to neurodegenerative diseases (NDDs) [1]. Seminal examples 
of this are altered oscillatory activity, e.g. disturbing synchronisation between neural 
populations, in Alzheimer’s disease (AD) and Parkinson’s disease (PD). For example, 
Stoffers and co-workers demonstrated an increase in functional connectivity in early-stage 
PD resting-state brain activity in the lower alpha band (8-10 Hz) [2]. The more progressed 
PD patients displayed increased functional connectivity in neighbouring frequency bands. 
Additionally the severity of Parkinsonism appeared positively associated with theta (4-
8 Hz) and beta (13-30 Hz) functional connectivity measures. Another study by the same 
research group revealed widespread slowing of brain activity of early-stage PD compared 
to healthy controls [3]. They hypothesised that brain activity could be linked to the 
topographical pattern of disease progression. Based on similar findings, Wu and co-
workers [4] suggested that the disrupted pattern of functional connectivity found in PD 
patients is related to disease severity. Rather than only being considered in terms of deep- 
and midbrain dysfunction, PD should hence be regarded as a disconnection syndrome as 
already suggested by Cronin-Golomb [5]. These results suggest that the observed 
disrupted brain activity in PD could have its origin in pathology-induced topological 
changes in the brain. However, cause-and-effect of altered network topology of the brain 
and its disrupted oscillatory activity remains unknown.  
 Several studies in patients with AD revealed distinctive brain activity. For instance, 
Greicius and co-workers reported decreased resting-state activity in AD patients in specific 
regions, thereby distinguishing AD from changes observed in healthy aging [6]. Stam and 
co-workers [7] found that AD is also characterised by a loss of small-world network 
characteristics such as an increased path length. Other studies from the latter research 
group [7-9] addressed resting-state data using graph theoretical measures unravelling 
disruptions of large-scale brain activity, where the disruptions in the lower alpha band (8-
10 Hz) were suggested to be caused by targeted attacks on the network’s major hubs [9]. 
This advocates the characterisation of AD as a ‘disconnection syndrome’ [10-11]. In fact it 
even goes beyond the mere disconnection by specifying highly connected targets, i.e. 
hubs, which are more likely to be hit by the disease. This could suggest that disrupted 
brain activity as found in AD is a result of the targeting of regions central to the brain 
network.  

In epilepsy another role of hubs in the brain network has been reported. Morgan and 
co-workers [12] revealed that an increase rather than a decrease in neural hubs might be 
the cause of epileptic seizures. Zhang and co-workers further supported these results by 
revealing increased nodal characteristics in brain regions affected in epilepsy [13]. They 
suggested that disruption in the functional and structural brain network in epilepsy may be 
explained by abnormal hub properties in the affected regions.  

Is the targeting of regions central to the brain network, i.e. alterations in the number 
of hubs, able to explain disrupted brain activity? Additionally one may ask whether the 
disruption of hubs is a more general neurodegenerative process characteristic of NDDs in 
general. Neural hubs are considered to be crucial in normal brain functioning since they 
connect large areas of the brain and increase information transfer between areas. 
However, to the best of my knowledge the exact influence of variation in the number of 
hubs (i.e. hub vulnerability or increases in hubs) on brain activity is unknown. 
 To gain insight into the effect of the number of hubs in brain networks on its dynamics 
(e.g., phase synchronisability) in a controlled setting these networks can be modelled. A 
simple but successful model to study global synchronisation of networks is the Kuramoto 
model [14-15], where a phase oscillator represents each member of the network. This 
allows for a detailed study of the influence of characteristics of these networks on phase 
synchronisation. For example, the distribution of native frequencies of oscillators [16], 
modularity [17], regular [18-19], small-world [20-22] and scale-free networks [23-24].  
 Hong and co-workers [22] induced a rewiring paradigm to examine the 
synchronisability of evolving small-world networks using a fixed probability 𝑝. Small-world 
networks, however, are not prone to induce hubs and to date the specific effects of the 
number of hubs in networks with respect to network dynamics, e.g., synchronisation, are 
poorly understood. To increase the number of hubs in a network a scale-free topology as 
first described by Barabasi and Albert [25] has to be induced. This model induces a scale-
free network by adding nodes with connections dependent on the degree of the existing 
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nodes, i.e. so-called preferential attachment. While nodes are added, highly connected 
nodes (hubs) are more likely to be attached to new nodes. A downside of this model, 
however, is that the scale-free topology is induced by growth, whereas developed brain 
networks generally do not exhibit an increase in brain regions. Park and co-workers 
revealed that the growth characteristic is not necessary for complex networks to self-
organise into a scale-free state [26]. Since then, these non-growing preferential rewiring 
networks [26-28] have only received modest attention in literature. However, they offer a 
solid solution for the proposed problems arising in growing networks.  
 In the first part of the current study I present a preferential rewiring approach based 
on the combined methods proposed by Hong and co-workers [22] and Xie and co-workers 
[27] to increase the number of hubs, i.e. hubness 𝐻, in a sparse non-growing network of 
coupled Kuramoto phase oscillators; the latter is here considered to represent oscillatory 
activity in distinct brain regions. By combining network (graph) theory with non-linear 
dynamics (here the Kuramoto model) theoretical estimates are achieved to quantify the 
effect of 𝐻 on the (stability of) synchronisation of phase oscillators. I adopted the phase 
divergence or order parameter 𝑟 as a measure of global synchronisation. To gain further 
insight into the effects of changes in hubness 𝐻 on network dynamics I used a system 
identification approach based on the estimation of Kramers-Moyal coefficients, as first 
proposed by Friedrich and Peinke [29]. Here I hypothesised that an initial increase in 
hubness is beneficial for network synchronisation. A general characteristic of hubs is that 
they cause a decrease in characteristic path length [30], which enhances the transition to 
the synchronisation state [22]. Furthermore, hubs cause local structures to become 
increasingly connected into modules and this could cause local synchronisation within 
these different hub modules to occur on a fast time scale whereas global synchronisation is 
hampered. As hubness increases further, hubs are more likely to be directly 
interconnected into so-called rich-clubs [31]. Low-degree nodes could become excluded 
from these modules and would thereby halter global synchronisation [32]. I thus expected 
the evolving network to exhibit different optimal hubness with respect to local 
synchronisability where different semi-stable states of partial synchronisation co-exist on 
the one hand and global (full) synchronisation on the other hand.  
 The overarching objective of this study was to find generic (organisational) principles 
in neurodegenerative diseases, where I wondered if the characteristics found in AD and 
epilepsy, i.e. hub vulnerability and increases of hubs respectively, are a general 
neurodegenerative process characteristic of NDDs. In the second part of this study the 
simulated results were qualitatively compared with resting-state brain activity (MEG) of PD 
patients [2-3]. Studies previously mentioned highlight that in the neurodegenerative brain 
hubs could be a target of alterations, i.e. degenerative attack or growth. Since it has been 
suggested that the human brain is optimised by evolutionary principles [33], I expected 
the human brain to possess a optimal number of hubs. I thus hypothesised that NDDs can 
be more generally characterised by a sub-optimal hubness and more specific that hub 
vulnerability is also present in resting-state PD. To examine hubness in brain networks in 
more detail a system identification approach prone to detecting differences in 
synchronisability and synchronisation dynamics was employed. The main focus of the 
second part of the study was to validate the applicability of this unbiased system 
identification approach to resting-state MEG time-series.  
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Methods part I	  

Scale-free Kuramoto model	  
The Kuramoto model [14] of coupled phase oscillators has a wide range of applications and 
is frequently used in neurobiological models due to its seminal form and analytic capacity 
for describing synchronous behaviour. Here I considered a stochastic Kuramoto network of 
𝑁  coupled non-identical phase oscillators that interact via undirected and unweighted 
connections according to:	  
 𝜃! = 𝜔! + 𝜉!(𝑡) +

𝐾
𝑁

𝐴!" sin(𝜃! − 𝜃!)
!

  . (1) 

In this network, the phase of oscillator 𝑖 is influenced through coupling, determined by 
global coupling strength 𝐾 (scaled by the amount of coupled phase oscillators 𝑁), with 
oscillator 𝑗, its own natural frequency 𝜔! and stochastic force 𝜉!(𝑡). The stochastic force is 
white noise induced to perturb the evolution of phases, and can be described by 

𝜉! 𝑡 = 0 
𝜉!(𝑡)𝜉!(𝑡!) = 2𝑄𝛿!"𝛿 𝑡 − 𝑡! . 

The angular brackets represent averages over different noise realisations, 𝑄 is the noise 
strength and represents the noise variance, 𝛿!" is the Kronecker delta function excluding 
noise-correlation between oscillators 𝑖 and 𝑗 and 𝛿(𝑡 − 𝑡!) is the Dirac delta function. The 
unweighted adjacency matrix 𝐴!"  is a 𝑁x𝑁 -matrix and defines the structural coupling 
between neighbouring oscillators (nodes) 𝑖  and 𝑗, with its binary elements representing the 
coupling between node 𝑖 and node 𝑗; 𝐴!" = 0 for disconnected nodes, 𝐴!" = 1 for connected 
nodes. For undirected unweighted network the adjacency matrix is symmetric, i.e. 𝐴!" = 𝐴!" 
and the node degree 𝑘!, i.e. the number of connections of a node, is given as 
 𝑘! = 𝐴!"

!
 

where the sum is over all nodes of the network.  
 The networks were modelled to be scale-free, i.e. the node degrees in the network 
obey a power law distribution. This is thought to reflect the functional connections in the 
brain as they have been shown to have a scale-free distribution; e.g., [34-36]. Scale-free 
networks were first described by Barabási and Albert [25] and are characterised by high-
degree nodes, from here-on referred to as hubs. Their scale-free network theory 
incorporates two characteristics of real networks that are not included in the random [37] 
and small-world [38] network theories: growth and preferential attachment. Growth is the 
addition of new nodes and connections to the network; preferential attachment is the non-
uniform preference of this addition, i.e. new nodes are more likely to have connections to 
nodes already having a high number of connections. These two characteristics allow for 
the emergence of hubs. However, in biological networks like the post-natal human brain, 
the number of neurons is not (significantly) increasing; structural changes are typically 
accomplished by altering connections between neurons (or by reducing the number of 
neurons due to pathology). Regarding modelling, many limitations appear with an increase 
of the number of nodes 𝑁 or connections 𝑘, such as effects on the degree distribution [39], 
synchronisation dynamics (see, e.g., [17]) and influences on graph theoretical measures 
used to define networks [40]. These 𝑁, 𝑘-dependencies can be avoided by adopting a fixed 
number of nodes 𝑁 and fixed average number of connections, i.e. a fixed average node 
degree 

𝑘 =
1
𝑁

𝑘!
!
  . 

Additionally, Park et al. [26] have shown that the growth characteristic is not needed for a 
complex network to self-organise into a scale-free state. Although these non-growing 
preferential rewiring networks [26-28] only received modest attention in literature, they 
offer a solid solution for the previously mentioned limitations arising in networks 
incorporating growth.   
 
Simulations 
I adopted the non-growing preferential rewiring network based on the model proposed by 
Xie and co-workers [27] such that the number of nodes 𝑁 and average node degree 𝑘  
was kept constant. I defined the network evolution according to a number of steps (Figure 
1): 

1. Initial network. The network started with a fixed number of unweighted nodes 
𝑁=150 and a fixed degree 𝑘=4 (hence 600 connections) in a regular ring lattice 
network structure. The average node degree was defined as 3% in line with findings 
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of a brain mapping study of Hagmann and co-workers [41] who investigated large-
scale structural brain networks using diffusion spectrum imaging. By definition no 
hubs were present at start. 
2. Rewiring the network. With each rewiring step 𝑆 a connection between random 
chosen nodes 𝑖 and 𝑗 was rewired to a random chosen node 𝑙, thereby ensuring a 
fixed number of edges. The probability that a connection is rewired from node 𝑖 to 
node 𝑙 depended on the normalised node degree 𝑘! of node 𝑙, i.e.  

 𝑃!→!(𝑘!) = 𝑘!/ 𝑘!
!

   (2) 

where the probability distribution 𝑃!→!(𝑘!)  provided the probability that a random 
chosen node has degree 𝑘. A constraint here is that nodes or clusters of nodes may 
not become disconnected. Rewiring stops at 𝑆 = 100.  
3. Implement Kuramoto’s dynamics on the network. The functional network was 
created by embedding each obtained adjacency matrix in a Kuramoto model of phase 
oscillators (1), where each node in the matrix corresponded to a phase oscillator. 
Natural frequencies 𝜔! were randomly selected from a Lorentz distribution with width 
𝛾=0.5. Initial phases 𝜃!,! were randomly chosen from the uniform distribution [0, 2𝜋].  

 
 
Figure	   1	   |	   Example	   of	   the	  non-‐growing	  preferential	   rewiring	  model	   embedded	   in	   a	  Kuramoto	  model	   of	   phase	  
oscillators.	   The	   initial	   network	   was	   a	   regular	   ring	   lattice	   (top	   left	   graph)	   with	  𝒌=4.	   With	   rewiring	   step	  𝑺	  
connections	  were	   preferentially	   rewired	  with	   probability	  𝒑	  (top	   right	   graph).	   Each	   of	   these	   evolving	   network	  
structures	  was	  implemented	  in	  a	  Kuramoto	  model	  (1)(bottom	  graphs).	  In	  this	  network	  one	  node	  is	  quantified	  as	  
hub	  node	  (displayed	  in	  orange).	   

All implemented Kuramoto models were simulated for 𝑇 subsequent iterations assessing 
synchronisability of the networks. Pilot simulations revealed increased time duration until 
steady state was obtained in subcritical regimes (𝐾 < 𝐾! and small 𝑆). Therefore, the time 
step between iterations ∆𝑡 was chosen as 200/T with the total number of iterations 𝑇 set to 
10! . For statistical significance, all simulations were repeated 100 times. Numerical 
simulations were performed over a range of different positive global coupling 𝐾= [0, 10], 
Δ𝐾  = 0.1 as to induce different levels of synchronisation. Simulations were performed for 
the non-stochastic and stochastic Kuramoto model, i.e. system (1) with 𝑄 = 0 and 𝑄 = 0.1, 
where the stochastic force 𝜉! is randomised over time by multiplication with a random 
normal distribution for each oscillator 𝑖. Simulations were performed using a commercial 
software package (MATLAB 7.14, The Mathworks Inc., Natick, MA, 2000). The preferential 
attachment method was manually written1 adopting algorithms from the Systems and 
Biology Toolbox [42], Matgraph Toolbox [43] and the Brain Connectivity Toolbox [44]. As 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Matlab source code for the numerical simulations available on request.	  
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a reference Erdös-Rényi networks were simulated with identical topological constraints 
(i.e., 𝑁 = 150, 𝑘 = 4) and implemented with the stochastic Kuramoto model, i.e. 𝑄 = 0.1. 
 To quantify the number of hubs for all simulated preferential rewiring topologies I 
adopted both a varying and a fixed hub threshold 𝑘! based on node degree [45]: any node 
with a degree higher than this threshold was classified as a hub. The varying threshold 
defined hubs by using a definition based on the variance of node degree and was formally 
defined as  

𝑘! = 𝑘 + 𝜎, 
where 𝑘  is the aforementioned average node degree and 𝜎 the standard deviation of the 
degree distribution, i.e.: 

𝜎 =
1
𝑁

(𝑘! − 𝑘 )!
!

  . 

The fixed hub degree used a constant as a threshold to qualify hubs: 
𝑘! = 𝐶  ,   

with 𝐶=4,5,6. The fixed hub threshold was not influenced by large fluctuations in variance 
commonly observed in evolving networks as the varying threshold was. After qualifying 
the number of hubs I defined hubness of the network, i.e. the fraction of nodes with a 
degree 𝑘! higher than the hub threshold 𝑘!, as 

𝐻 =
1
𝑁

1 − Θ(
!

𝑘! − 𝑘!)  , 

with Θ(𝑘! − 𝑘!) the Heaviside function such that the sum adds a zero for all nodes having a 
node degree 𝑘! lower or equal to the hub threshold 𝑘! and a one when higher than this 
threshold. To validate and explore characteristics of the structural networks evolved using 
the preferential rewiring method I adopted a number of complex network measures. These 
include characteristic path length, clustering coefficient, local efficiency, global efficiency, 
closeness and betweenness centrality. For a more thorough explanation of these (and 
more) measures please refer to, e.g., [44, 46]. These results are detailed in Appendix A. 
All necessary implementations to calculate complex network measures were adopted from 
the Brain Connectivity Toolbox [44]. 
 
Analysis 
Since the synchronisation behaviour of the network is of interest, the phase divergence or 
order parameter of the Kuramoto system was calculated according to: 
 

𝑟 𝑡 = 1/𝑁 𝑒!!! !
!

   , 
(3) 

where 𝜃! was the phase of an oscillator at time 𝑡 (i.e. iteration n in the simulations). The 
order parameter 𝑟 is the key parameter in the analysis of the data, since it represents 
phase coherence and thus the amount of global synchrony in the network. Please note that 
it can be applied to any data set exhibiting dynamics in the polar plane.  
 To explore the phase divergence of a system more thoroughly, I used an approach 
called the extraction procedure, or system identification procedure [47] (see for a more 
detailed description and possible applications, e.g., [48] or [49]), which has already been 
applied successfully in a wide variety of topics including turbulent flows [47], economics 
[50] and rhythmic human movement [51]. This procedure allows for an unbiased method 
to identify underlying deterministic and stochastic components of complex dynamical 
systems. Note that the extraction procedure requires the generating processes to exhibit 
Markov properties. In other words: one has to verify whether the system has no memory. 
The Kuramoto model of interest is a Markov process since its future state by definition 
depends on present state only, as presented in Eq. (1). When applying this procedure to 
other data sets the requirement of Markov properties can be verified by the Chapman-
Kolmorogov equation, which reads 

𝑝 𝑥!!, 𝑡!! 𝑥, 𝑡 = 𝑝 𝑥!!, 𝑡!! 𝑥!, 𝑡!   𝑝 𝑥!, 𝑡! 𝑥, 𝑡   d𝑥′, 

where 𝑝 𝑥!!, 𝑡!! 𝑥, 𝑡  represents the probability density to find a system at state 𝑥!! and time 
𝑡!! when state 𝑥 and time 𝑡 are known.  
 The system under study is a dynamical system, with the order parameter 𝑟 describing 
the structure and dynamics of the system. It can be cast in the form of a generalised 
Langevin-equation 
 𝑟 = 𝑓 𝑟 + 𝑔 𝑟 Γ 𝑡 . (4) 
This means that I was allowed to describe the evolution of the order parameter (i.e. the 
derivative of 𝑟  with respect to time 𝑡 ) as a combination of deterministic (𝑓 𝑟 ) and 
stochastic (𝑔(𝑟)Γ(𝑡) ) components. The deterministic components corresponded to the 
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intrinsic forces caused by the interactions between oscillators. The stochastic forces 
incorporated the randomness of the oscillators’ natural frequencies, initial phases and the 
external noise induced by stochastic force 𝜉. An estimate of these components was found 
in terms of the stochastic dynamics’ drift and diffusion coefficients 𝐷(!) and 𝐷(!), which 
agreed with the first two Kramers-Moyal coefficients in the dynamics of the corresponding 
probability density [52]. The 𝑞th order Kramers-Moyal coefficient was computed according 
to 
 𝐷 ! 𝑥 = lim

!!→!

1
𝑞!
1
Δ𝑡

𝑥! − 𝑥 ! 𝑝 𝑥!, 𝑡 + Δ𝑡 𝑥, 𝑡 d𝑥!. (5) 

 
The probability density function 𝑝(𝑥!, 𝑡 + Δ𝑡|𝑥, 𝑡) represented the probability of the system to 
obtain state 𝑥! at time 𝑡 + Δ𝑡 after a previous state 𝑥 at 𝑡, where Δ𝑡 approaches zero. For a 
numerical estimation of the drift and diffusion coefficients 𝐷(!)  and 𝐷(!)  the data was 
binned 2 . Since the dynamics of 𝑟  were estimated, the range of values within 𝑟  was 
subdivided into equally spaced parts where all repetitions on a fixed value for 𝐾 and 𝑆 were 
taken into account as one long measurement. Each bin was specified by a 𝑥 value. Then, 
as Eq. (5) suggests, the probability density function 𝑝(𝑥!, 𝑡 + Δ𝑡|𝑥, 𝑡) was determined as 
follows: when at time 𝑡 a sample was found in a bin with centre 𝑥 the probability that the 
next sample at 𝑡 + Δ𝑡 will be in a bin with centre 𝑥! was calculated. This was carried out for 
all neighbouring samples and all combinations of bins. The resulting values of the 
probability function were then multiplied by their corresponding differences raised to the 
power 𝑞 (𝑞 = 1 for the drift coefficient, 𝑞 = 2 for the diffusion coefficient). Subsequently this 
was integrated over bins of the next sample 𝑥! and scaled by 𝑞! and time step Δ𝑡. Note that 
the estimation of the drift and diffusion coefficients requires the dynamical system under 
study to be stationary.  
 The stochastic differential equation of the order parameter (4) can now be rewritten 
as 

𝑟 = 𝐷 ! 𝑟 + 2𝐷 ! 𝑟 Γ 𝑡 , 

where 𝐷(!) and 𝐷(!) represented the first two Kramers-Moyal coefficients or the drift and 
diffusion coefficient respectively.  
 For the sake of brevity, I focused on the deterministic components of network 
dynamics, i.e. the drift coefficient 𝐷(!).  This coefficient thus mapped the dynamics of a 
system without its randomness and thereby identified deterministic attractors and 
repellers of the system under study. In particular assessing its potential via 

𝑉 𝐷 ! = − 𝐷 ! 𝑟   dr 

provided a very accessible way to examine stability of modes of synchronisation, since 
(local) minima in the potential of 𝐷(!) correspond to (local) stable states. To exemplify: if a 
system exhibited a global minimum in 𝑉(𝐷 ! ) at a certain 𝑟, this indicated that the system 
possessed a global attractor at this value of 𝑟 such that the system’s most stable state was 
located at this 𝑟. Furthermore, local minima in 𝑉(𝐷 ! ) indicated locally stable states.  
 
Statistics 
After assessing normality of the outcome parameters I used descriptive statistics in 
combination with a high number of repetitions of modelling simulations to obtain a 
distribution of simulated behaviour and average values, variances and confidence intervals 
of the parameters of interest.  
 
Methods part II 

The second part of this study followed the approach to examine characteristics defining 
network synchronisability as a function of hubness of the previous part (see Methods part 
I) and extrapolated this to existing empirical data. The main goal was to assess the 
applicability of the previously adopted system identification approach to empirical data, in 
this case resting-state MEG time-series of Parkinson’s disease patients. For this I used 
existing resting-state MEG data as selected and used in previous studies [2-3]. An 
overview of the described method is illustrated in Figure 2.  
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  The Matlab source code for Kramers-Moyal coefficient estimation is available from the authors on request.	  
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Subjects 
A total of 70 Parkinson’s disease (PD) patients along with 21 healthy controls have been 
selected for analysis and measured in a previous study by Stoffers and co-workers [2-3]. 
The PD patients were divided into four subgroups based on their disease duration, i.e. a 
group of newly diagnosed, untreated patients (N=18), a group of mild PD patients (N=19, 
disease duration of 3-5 years), a group of mild-moderate PD patients (N=16, disease 
duration 6-8 years) and a group of moderate PD patients (N=17, disease duration = 9-11 
years). The latter three groups include 37 levodopa-treated PD patients. The self-declared 
healthy controls have been age-matched with the newly diagnosed, untreated patient 
group and consist of spouses of patients and healthy volunteers.  
 Disease duration was determined by the patients’ subjective estimate of the time of 
occurrence of first motor symptoms, which has been shown to correlate well with both 
medical records and estimates from face-to-face interviews with a medical professional 
[53]. Furthermore, a number of subject characteristics were determined as described 
previously and in more detail by Stoffers et al. [3]. These measures include level of 
education using the International Standard Classification of Education [54] and premorbid 
intelligence using the National Adult Reading Test (NART) [55]. For the Parkinson patients 
a number of additional subject characteristics were determined. These include time of 
disease onset and disease rating sub scores using the Unified Parkinson’s Disease Rating 
Scale motor scores (UPDRS-III) [56] and modified Hoehn and Yahr stages [57], both 
obtained by a training physician prior to MEG registration in the “practically defined OFF” 
state as defined by the CAPIT Committee [58].  
 

 
Figure	  2	  |	  From	  MEG	  to	  synchronisation	  dynamics	  using	  a	  system	  identification	  approach.	  	  	  	   

MEG data acquisition and pre-processing 
MEG data acquisition and pre-processing were largely performed as described previously 
[3]. Subjects were recorded using a 151-channel whole-head radial gradiometer MEG 
system (CTF Systems Inc., Port Coquitlam, BC, Canada) at the VU medical centre in 
Amsterdam. The recording band pass was set to 0.25-125 Hz with a sample rate of 312.5 
Hz. Levodopa-treated patients were recorded in the “practically defined OFF” state. MEG of 
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all subjects was recorded in an eyes-closed resting-state condition. Of the 151 channels, a 
total of 12 channels were excluded due to technical problems of some sort, thus leaving a 
total of 139 channels per subject (see [59] for more information). For further analysis the 
MEG was converted into ASCII-files and imported into a commercial software package 
(MATLAB 7.14, The Mathworks Inc., Natick, MA, 2000). Subsequently a pre-processing 
procedure as described by Olde Dubbelink and co-workers [59] was applied, i.e. split up all 
subject registrations into epochs of 5000 samples (16s) and exclude all channels and 
epochs containing artefacts for further analysis. Artefacts that excluded epochs from 
selection were, e.g., muscle activity and eye movements affecting one or multiple 
channels. Note that pre-processing is necessary to guarantee stationarity of the data 
required by the system identification approach applied later.  
 Since I was mainly interested in validating whether the approach still holds for small 
sample-sizes of resting-state time-series and to explore its functional relevance as a 
diagnostic tool, I restricted the data set to only two subjects within each of the three 
defined subgroups (control, newly-diagnosed PD patients and moderate PD patients). 
Subject selection was based on gender (male), age and level of education.  
 
Data analysis 
Due to limited availability only four trials (consisting of 5000 samples or 16 s each) per 
subject were taken into account. For simplicity the study was limited to a single frequency 
band, i.e. the alpha1 (8-10 Hz) frequency band. The choice for the alpha1 band was based 
on the wide variety of results reported in this frequency range in studies on Parkinson’s 
disease patients [2, 59-60]. Subject trial time-series were thus filtered with a second order 
Butterworth band pass filter in the alpha1 (8-10 Hz) frequency band. Note that due to this 
filtering, rapid changes in the time-series were excluded. This was not a problem since I 
was mainly interested in extracting the order parameter, i.e. the slowest dynamical 
variable in the system.  
To obtain the phase of the MEG data the analytic signal 𝑋!(𝑡) for each configuration 𝑐 (i.e. 
different subject, trial and channel) was calculated by applying the Hilbert transform: 
 𝑋! 𝑡 = 𝑥! 𝑡 + 𝑖𝑤! 𝑡 , (6) 
with 𝑥!(𝑡) and 𝑤!(𝑡) corresponding to the real and imaginary parts of the complex time-
series 𝑋!(𝑡), where the real part 𝑥!(𝑡) was the original time-series and 𝑐={subject, trial, 
channel}. Next the phase 𝜃!(𝑡) of each original MEG signal space time-series was extracted 
using the analytic phase obtained from Eq. (6) such that  
 𝜃! 𝑡 = arctan

𝑤!(𝑡)
𝑥!(𝑡)

. (7) 

Considering the source-space MEG time-series as a system of coupled oscillators allowed 
for a calculation of the phase coherence 𝑟 using (3) for each subject and trial with 𝑁 the 
number of MEG channels. Following the similar system identification approach as 
mentioned earlier to the system of coupled phase oscillators (see Methods part I) the drift 
coefficient 𝐷(!) was estimated and subsequently its potential was assessed (see Figure 2). 
Contrary to the earlier performed analysis, the diffusion coefficient 𝐷(!) was also estimated 
for all subjects. Due to the highly descriptive nature of the second part of this study no 
statistics measures were adopted. 
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Results part I 

Preferential rewiring model 
The number of hubs as quantified using node degree steadily increased with rewiring step 
𝑆 for all adopted hub measures (Figure 3). For the non-fixed threshold, i.e. 𝑘! > 𝑘 + 𝜎, the 
number dropped at 𝑡 ≅ 60 with sharply increasing variance. This drop was due to the 
definition of the hub threshold in combination with the discreteness of node degree: as the 
standard deviation of the distribution continued to increase from zero with 𝑆, the hub 
threshold rose concurrently. As the hub threshold reached a discrete node degree value, a 
large number of nodes became excluded and the hub number sharply dropped. For fixed 
hub thresholds (𝑘! > 4,5,6) the number of hubs increased throughout the full range of 𝑆. In 
the following results I adopted the fixed hub threshold 𝑘! > 5  to quantify hubs and 
normalised this by the size of the network to find hubness 𝐻. 	  	  

	  
Figure	   3	   |	   The	   fraction	   of	   hubs	   in	   the	   total	   network,	   i.e.	   hubness	  𝑯,	   as	   a	   function	   of	   rewiring	   step	  𝑺.	   As	   the	  
network	   was	   rewired	   with	  𝑺	  the	   hubness	   increased	   for	   all	   four	   hub	   measures	   used.	   For	   all	   fixed	   measures	  	  
(𝒌𝒉 > 𝟒,𝟓,𝟔)	  hubness	  was	  seen	   to	   increase	   throughout	   the	   full	   range	  of	  𝑺.	  The	  variable	  measure	   (𝒌𝒉 > 𝒌 + 𝝈)	  
was	   seen	   to	   transition	   from	   the	  𝒌𝒉 > 𝟒	  to	   the	  𝒌𝒉 > 𝟓	  threshold	   measure	   between	  𝑺 = [𝟔𝟎,𝟏𝟎𝟎].	   The	   transition	  
occured	  due	  to	  an	  increasing	  node	  degree	  variance	  with	  𝑺;	  this	  caused	  nodes	  previously	  quantified	  as	  a	  hub	  node	  
to	  become	  excluded.	   

Global network synchronisation 
Changes in global synchronisation 𝑟 
as a function of overall coupling 
strength 𝐾  and hubness 𝐻  are 
illustrated in Figure 4. First to 
notice is that global 
synchronisation of the network of 
coupled oscillators was, besides 
being dependent on global coupling 
as expected, also markedly 
influenced by 𝐻. Although network 
topology was seen to have little to 
no influence in the weakly coupled 
regime ( 𝐾!≈  2 ), in the stronger 
coupled regime global 
synchronisation of the network of 
coupled phase oscillators was 
observed to increase as the 
number of hubs, i.e. hubness, 
increased. The same holds for 
network hubness: as the network 
was close to a regular topology 
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with corresponding low hubness (𝐻 ≈ 0) global coupling had limited influence on network 
synchronisation. The largest changes in 𝑟 were observed for 𝐾 = [0.5, 2] with high 𝐻 and 
𝐻 = [0, 0.02] with high 𝐾.	  	  

 
Figure	  5	  |	  Global	  synchronisation	  𝒓	  as	  a	  function	  of	  𝑯	  and	  𝑲	  (different	  panels).	  Since	  the	  distribution	  of	  𝒓	  	  was	  not	  
normal	   the	   median	   is	   shown;	   the	   red	   areas	   represent	   the	   interquartile	   range.	   	   Global	   synchronisation	   of	   a	  
network	  of	  coupled	  oscillators	  was	  seen	  to	  depend	  on	  both	  global	  coupling	  and	  hubness.  

 Interestingly, strong coupling and a high hubness were both required for maximal 
global network synchronisation. Failure to obtain maximal synchronisation at low hubness 
can be attributed to the high characteristic path length of the corresponding networks and 
thereby the inability for oscillators to interact successfully. A lack of central nodes thus 
seems to suppress the network to obtain full global synchronisation.  A more detailed 
visualisation of global synchronisation including an estimation of variability is shown in 
Figure 5. In the strongly coupled (𝐾 →10) regime small increases in hubness had a large 
influence on network synchronisability. These results suggested that hubness had a great 
influence on whether a network was able to synchronise, where even deviations as small 
as a few rewired connections altered network synchronisability. 

Synchronisation dynamics 
To further investigate the system’s deterministic dynamics, the first Kramers-Moyal 
coefficient, i.e. the drift coefficient 𝐷(!) , was estimated. Global minima of the drift 
coefficient’s potential, corresponding specifically to the root of the drift coefficient and the 
most stable state of the deterministic system in general, are shown in Figure 6. First thing 
to notice is that as hubness 𝐻 increased with rewiring 𝑆, the global minima were found 
close to full synchronisation values, i.e. 𝑟 → 1 , suggesting that global synchronisation 
occurred as the most stable state. At the regular ordered network (𝐻 = 0, top left panel in 
Figure 6) the deterministic system preferred an unordered state for all 𝐾 values within the 
simulated range. As hubness increased and the network became less ordered, 
synchronising behaviour from low 𝐻 on was observed in the strongly coupled regime. It 
was clear that changing the topology by preferential rewiring from a regular ordered 
network boosted the stability of the globally synchronised state. However, I observed a 
large transient regime where only partial synchronisation was attained and it was in this 
critical regime that a lot of locally stable states emerged and coexisted (Figure 7). This 
critical regime spanned approximately from the initial emergence of hubs (𝐻 ≈ 0.002) until 
𝐻 ≈ 0.05 in the semi-weak to strongly coupled regime (𝐾 ≈    [2,10]). Note that the true 
critical regime could be spanning beyond 𝐾 = 10 for some 𝐻. 
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Figure	   7	   |	   Global	   (black)	   and	   local	   (red)	  minima	   of	   the	   potential	   of	   the	   drift	   coefficient	   for	   the	   noise-‐induced	  
𝑸 = 𝟎.𝟏	  network	  topology.	  Values	  of	  𝒓	  are	  plotted	  as	  a	  function	  of	  𝑲	  and	  𝑯	  (different	  panels).	  The	  occurrence	  of	  
local	  minima	  increased	  with	  initial	  increases	  of	  𝑯	  and	  decreased	  at	  higher	  𝑯.	  The	  global	  minima	  corresponding	  
to	   the	   most	   stable	   state	   of	   the	   system	   converged	   to	   full	   synchronisation	   for	   high	  𝑯	  and	  𝑲.	   The	   hubness	  𝑯	  
corresponded	  to	  an	  average	  number	  of	  hubs	  of	  respectively	  (from	  left	  to	  right,	  up	  to	  down):	  0,	  0.3,	  1.2,	  3,	  7.5,	  10.5	  
and	  13.5. 
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Figure	  6	  |	  Global	  minima	  of	  the	  potential	  of	  drift	  coefficient	  𝑫(𝟏).	  Values	  of	  𝒓	  are	  plotted	  for	  both	  the	  noise-‐free	  
model	   (𝑸 = 𝟎,	   black	  dot)	  and	  noise	  model	   (𝑸 = 𝟎.𝟏,	   red	  plus)	  as	  a	   function	  of	  both	  𝑲	  and	  𝑯	  (different	  panels).	  
Noise-‐induced	  synchronisation	  was	  observed	  as	  a	  reduced	  variance	  in	  𝒓	  over	  𝑲.	  	  The	  hubness	  𝑯	  corresponded	  to	  
an	  average	  number	  of	  hubs	  of	  respectively	  (from	  left	  to	  right,	  up	  to	  down):	  0,	  0.3,	  1.2,	  3,	  7.5,	  10.5	  and	  13.5.	   
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	   In order to investigate the influence of noise on a system’s ability to synchronise I 
induced a second model with stochastic force 𝑄 = 0.1. For the model which excluded noise 
(𝑄 = 0) I observed a very long transient regime for 𝑆 with respect to global network 
synchronisation. For the latter model I 
saw a noise-induced stabilisation occur 
(Figure 6, plus markers), i.e. the network 
was seen to reach a stable state of global 
synchronisation at a lower hubness value 
𝐻  with respect to the 𝑄 = 0  model and 
showed an overall reduced variation in 𝑟. 
The transient regime entailing partial 
synchronisation, however, was still 
present. A second observation seen in 
both models was the presence of 
multiple roots in the drift coefficient 
(Figure 7). Even for 𝑄 = 0.1 a lot of local 
minima were present throughout the 
whole spectrum of 𝐾  and 𝑆 . For high 𝑆 
the local minima were seen to diminish in 
number, a higher hubness thus seemed 
to have a stabilising effect on 
synchronisability. However, initial 
rewiring from the regular topology 
( 𝐻~0.002 − 0.02 ) only increased the 
number of local minima and thereby the 
number of locally stable states of the system.  
 As a reference I investigated random networks with the same topological constraints, 
results are shown in Figure 8 The random network clearly synchronised fully even for low 
𝐾 due to its low characteristic path length. More interestingly, the random network showed 
(almost) no local minima pointing out the fact that the only stable state of the random 
network was the globally synchronised.  According to the hub threshold adopted earlier 
these networks have 30.5  ±  3.2 hubs on average.  
 
Results part II 

Applicability of a system 
identification approach to 
empirical resting-state data 
I assessed the applicability of 
the previously shown system 
identification approach to 
empirical data, in this case 
resting-state MEG time-series of 
Parkinson’s disease patients. 
Phase divergence 𝑟 over time of 
a typical trial in the alpha1 band 
is shown in Figure 9. As can be 
observed, 𝑟 was seen to increase 
and decrease over time within 
certain values up to 𝑟  ~  0.5 
indicating local and/or global 
synchronisation and desynchronisation patterns of the different brain network regions over 
time during resting-state.  
 Although limited sample sizes of time-series within trials constrained the quality of the 
Kramers-Moyal coefficient estimation, I was able to determine the drift coefficient (Figure 
10, left panels) and its potential (Figure 10, right panels). Unlike the drift coefficients 
obtained in the simulated networks previously, the drift coefficient of the resting-state 
MEG time series showed only a single root for each subject, with a corresponding single 
minimum found in its potential. A potential of this form could be described by an even 
polynomial of higher order, i.e. a fourth order or higher. Interestingly, the potential of the 
drift coefficient showed marked asymmetric behaviour over 𝑟  for all subjects. Visual 
inspection gave no indication of differences in global minima of either size or location 
between subject groups. In other words: the deterministic brain network during resting-
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Figure	   8	   |	   Synchronisability	   of	   Erdös-‐Rényi	   networks	   with	  
identical	   topological	   constraints.	   Global	   minima	   of	   the	  
potential	  of	  the	  drift	  coefficient	  of	  𝒓	  are	  shown	  as	  a	  function	  
of	  𝑲.	   Local	   minima	   (blue	   circles)	   were	   almost	   non-‐existing	  
over	  the	  whole	  range	  of	  𝑲.	   
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Figure	   9	   |	   Phase	   divergence	  𝒓	  over	   time	   as	   calculated	   over	   all	   MEG	  
channels	   of	   resting-‐state	   time	   series.	   The	   value	   of	  𝒓,	   representing	  
global	   synchronisation,	   is	   typically	   seen	   to	   increase	   and	   decrease	  
over	  time.	  In	  this	  case	  the	  phase	  divergence	  of	  subject	  1,	  trial	  1	  in	  the	  
alpha1	  band	  is	  depicted.	   
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state seemed to prefer a similar stable state of global synchronisation across the different 
subject groups.  

 
 
 The diffusion coefficient 𝐷(!) , 
depicting the stochastic components of 
the resting-state brain, is shown in 
Figure 11. The diffusion coefficient is 
found to be globally constant over the 
range of 𝑟 for most subjects. Locally 𝐷(!) 
is seen to have some large increases, 
suggesting the presence of 
synchronisation-dependent noise. 
However, since the amount of samples is 
so small, no conclusive results can be 
drawn from these findings.  
 
  

Figure	  10	   |	  Drift	   coefficient	  𝑫(𝟏)	  and	   its	   potential	  𝑽	  over	  𝒓	  for	   the	  different	   subject	   groups.	   The	  drift	   coefficient	  
shows	  a	  single	  root	  for	  all	  subjects	  corresponding	  to	  a	  single	  stable	  state	  (attractor)	  of	  the	  network,	  in	  this	  case	  
the	   resting-‐state	   brain.	   The	   root	   of	  𝑫(𝟏)	  is	   further	   investigated	   by	   visualising	   its	   potential	   showing	   a	   single	  
minimum	  for	  all	  subjects.	   
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Figure	   11	   |	   Diffusion	   coefficient	   𝑫(𝟐) 	  over	   𝒓 	  for	   the	  
different	   subject	   groups.	  𝑫(𝟐)	  is	   constant	   over	   the	   whole	  
range	   except	   for	   local	   increases	   observed	   in	   some	  
subjects.	   
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Discussion 

General conclusions 
In this study I adopted a preferential rewiring model which showed an increase in hubness. 
An increase or decrease in hubness 𝐻 has profound effects on global synchronisation of 
sparsely coupled networks as found in the human brain. Also, the presence of hubs, 
together with sufficient coupling, is a primary prerequisite to obtain global synchronisation 
as a stable state. More interestingly, a low-to-medium 𝐻 induces an emergence of locally 
stable states of partial synchronisation, which could not be explained by an increase in 
randomness. Lastly I adopted the same approach to resting-state MEG data of PD patients 
to test its applicability. The approach was able to show minima in the potential of the drift 
coefficient for all subjects. Although this approach did not highlight any differences 
between patient groups, the method seems feasible as an unbiased future diagnostic tool 
in Parkinson’s disease and other neurodegenerative diseases affecting cortical 
synchronisation, however, more research is needed. The following paragraphs hold an in-
depth discussion on these results.  
 
Preferential rewiring model 
I adopted a model based on the non-growing scale-free network model proposed by Xie 
and co-workers [27] to study the effect of hubs on synchronisability of sparse networks. 
The rewiring procedure as proposed indeed induces hubs as quantified using the common 
definition based on a fixed node degree [45]; the chosen measure to quantify hubs 
however was not trivial. This problem arises from the fact that a hub node is poorly 
defined in literature and no general consensus to its measure exists. In the graph theory 
hubs are defined as well-connected nodes [45]. In brain networks additional criteria arise 
defining hub nodes as high-degree nodes central to the network (i.e. high degree 
centrality, low characteristic path length, low clustering coefficient and high aggregation of 
characteristic motifs) [61]. However, in studies on brain networks the most commonly 
used hub measures are solely based on one characteristic, such as node degree [62-63] or 
path length [64] whereas only a small number of studies consider multiple measures [65-
66]. The current results defining hubs using a variable node degree (𝑘! > 𝑘 + 𝜎) in an 
unweighted network clearly shows the bias of this measure when comparing networks with 
a changing distribution or varying standard deviation. To avoid this bias a fixed hub 
threshold based on node degree can be adopted. This, on the other hand, does not 
necessarily guarantee an increase in overall hub quality: as more nodes are qualified as 
hubs, the centrality characteristics of these nodes with respect to the other network nodes 
might decrease. As a critical note, I therefore would like to stress the importance of 
selecting a suitable hub measure, considering its applicability on the network and taking 
notion of its implications. 
 The previously described problem with hub definition also leads to the issue of 
defining networks with a changing hubness in a controlled setting. The adopted model 
includes preferential rewiring to obtain hubs and seems successful in achieving so. 
However, the effects found could still be an effect of rewiring rather than an increase in 
the number of hubs. To test for this one could argue to compare the modelled networks 
with for instance Watts and Strogatz (WS) random rewiring networks [38] with 
intermediate values for rewiring probability 𝑝 or random networks with 𝑝 = 1 (i.e., Erdös-
Rényi networks [37]), but these networks would still possess high degree nodes (i.e., 
hubs) [40]. As a solution one may use a rewiring WS network for comparison that does 
not allow for the emergence of hubs, e.g. by constraining rewiring of connections to nodes 
with a degree close to the hub threshold. The practical implementation of such a network 
could prove hard for small networks and I would like to stress here that the emergence of 
hubs in such a network is still only dependent on the selected hub threshold. A less solid 
solution used in this study is the comparison of my modelled networks with those of Erdös-
Rényi networks after rewiring has taken place. A direct consequence of rewiring on a 
network is an increase of randomness; hence this allows us to assess effects of 
randomness on synchronisability as imposed by these networks.   
	  
Network synchronisation 
An increase in the number of hubs positively affects the ability for a phase oscillator 
network to synchronise. In fact, a high hubness 𝐻 seems to be a primary requisite for 
obtaining (semi-) full global synchronisation. Furthermore I observed a broad transient 
interval for 𝐻  in which global synchronisation is not attained and a lot of partially 
synchronised states coexist as stable and unstable network states. In particular the 
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emergence of multiple local minima in the potential of 𝐷(!), corresponding to locally stable 
states of the network of a, in most cases, partially synchronised state, indicates the 
existence of a hub-induced multistability and possibly an area of self-organised criticality 
[67]. Systems possessing such self-organised criticality typically show a large functional 
repertoire. Recently, self-organised criticality has been hypothesised to appear as an 
attractive mode for normal brain functioning [68-70] since it optimises information 
processing [71]. Combining this knowledge with my findings suggests that hubness could 
be key to self-criticality in sparsely coupled networks including highly complex networks 
such as the brain cortex. A small deviation in this hubness could thus cause a loss of 
criticality and thereby a decrease in functional repertoire. Extrapolating this, I hypothesise 
that a deviation in hubness in the human brain network might even be able to explain a 
loss of criticality and functional diversity as for instance observed in cortical brain activity 
of epilepsy patients [72]. 
 Although a transient regime for 𝐻 is clearly present, it is not clear how and where this 
transient regime spans exactly or if any critical hubness value 𝐻! is present as has been 
widely shown for global coupling in Kuramoto networks [14]. It is expected that the rather 
large size of the observed transient can mainly be attributed to the considerable between-
repetition variability in hubness combined with limitations within the estimation of the 
Kramers-Moyal coefficients (i.e. ‘the more samples the smaller the deviation’, [73]). A 
larger number of repetitions in the order of at least 10! is desired to further investigate the 
exact location and form of this phase transition. Unfortunately due to lack of computational 
power and time constraints, it is beyond the scope of this study to examine this in more 
detail.  
 As a reference network I examined Erdös-Rényi networks [37] with similar topological 
constraints on the following question: to what extend can the effects of 𝐻  on 
synchronisability be accounted for by the increasing randomness of the evolving network 
and what is indeed induced by the increase in hubness? A general conclusion here is that 
the increase of randomness in the evolving network indeed seems to boost 
synchronisability. Therefore, the observed increased (stability of) global synchronisability 
with 𝐻 can very well be attributed to an increase in randomness of the network. However 
it does not explain the emergence of (un)stable states of partial synchronisation for low-
to-medium 𝐻  nor does it explain how and where the transient (i.e. phase transition) 
occurs. I therefore consider these latter results a mere effect of hubness.  
 The emergence of coexisting unstable states as a function of hubness needs further 
investigation. I would like to propose that the increase in functional repertoire 
corresponding to an increase in the number of coexisting (locally) stable states could be 
caused by different competing patches of hubs. To test this hypothesis I suggest an 
examination of the local synchronisation patterns within the evoluting topologies. As hubs 
emerge due to preferential rewiring I expect these nodes to form clusters with their own 
preferred oscillating frequency resulting in competing behaviour of different patches of 
hubs, thereby creating an increase in functional states. To test this, local synchronisation 
[74] can be calculated to see whether these hub communities exhibit full local 
synchronisation in the critical transient regime. Additionally modularity could point out to 
what extent different modules are present as a function of rewiring or hubness. These 
results are particularly interesting in the scope of human brain networks since the brain is 
known to have several resting state networks that are alternatingly activated in time [75]. 
Further investigating this behaviour in a controlled setting could be beneficial to a better 
understanding of the brain network. 	  
	  
Applicability of a system identification approach to empirical resting-state data 
A system identification approach based on the estimation of Kramers-Moyal coefficients 
was shown to successfully identify stable synchronisation modes and stochastic 
components of resting-state MEG time-series of Parkinson’s disease patients. However, the 
observed potential showed only one minimum for each subject and size and location of this 
global extremum did not differ in size or location between patient groups. Extrapolating 
findings found in the first part of this study suggested the presence of local minima in the 
potential for the empirical data. A two-sided explanation for these unexpected results can 
be proposed, i.e.: data limitations and an assumption bias. The first of these entails the 
straightforward explanation, i.e. the limited number of data samples used in combination 
with the high correspondence of the quality of the approach on the number of samples 
available (discussed in further detail in next paragraphs). However, testing the approach 
on a comparable sample size of data from the first part ruled out this possibility: the 
system identification procedure was still able to reveal local minima. On the other hand, 
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the limited sample size did hamper the resolution of the estimation of the drift coefficient 
and thereby its potential. Minima close to the global minimum could thereby have been 
ending up in the same bin as the global minimum and thus filtered out as a local 
extremum. A higher sample number, as also discussed in later paragraphs, could thus 
offer a solution to reveal possible local minima close to the global minimum. However, I 
would like to stress that this only offers a minor explanation to the observed single 
minimum observed in the empirical data.  
 As a second, more solid explanation I would like to propose an assumption bias, i.e. 
that of the sparsity of the network. In the first part of this study, i.e. the simulations, 
function emerged on top of an imposed structure. The sparsity of the simulated structures 
was thought to reflect the sparsity in true structural brain networks of 3% as reported by 
Hagmann and co-workers [41]. In the second part of this study resting-state MEG time-
series were assessed. Resting-state functional connectivity which, although is thought to 
reflect the underlying structural network [91], does not necessarily imply that functional 
connections reflect structure per se [92] In other words: sparsity of structural and 
functional brain network might differ to a large extent. In fact, the observed single 
potential for all subjects showed more similarities to those observed for all-to-all coupled 
networks of stochastic phase oscillators with low global coupling [93]. This suggests that 
the functional resting-state network as studied in the second part might not have been as 
sparse as assumed and did not reflect the simulated sparse networks. To check for this 
one could assess and compare the functional connectivity of both the simulated and 
empirical data. However, due to time limitations this was not carried out.  
 Since Parkinson’s disease is characterised by stage-dependent disturbances in 
network synchronisability [60] the results suggest that an application of this method might 
serve as an unbiased qualitative diagnostic tool to classify PD patients in addition to the 
rather quantitative and occasionally subjective measures used nowadays (i.e. disease 
duration, UPDRS scale [56], Hoehn and Yahr staging [76] and/or LEDD) some of which 
neglecting variability in disease progression between patients [77]. Alternative possible 
applications of the presented method, including classifying other (disconnective) 
neurodegenerative diseases that have been reported to show topological changes in the 
functional brain network (e.g. Alzheimer’s disease [8, 78], schizophrenia [79-80] and 
multiple sclerosis [81]) require further exploration. Furthermore, it could give insight into 
these pathology-induced topological changes in the functional and possibly structural brain 
network. It could thus serve as a predictive tool; assessing disease severity and predicting 
prognosis of pathology.  
 A minor finding in this study includes the non-parametric behaviour of the potentials 
of 𝐷(!) found for the analysis of the resting-state MEG time-series in the alpha1 band. 
Although this study was not aimed to find any conclusive results, the findings are 
conflicting with those of Hindriks and co-workers, who suggest that resting-state MEG 
activity in the alpha1 band can be modelled as weakly coupled self-sustaining linear 
oscillators [82]. However, since the number of samples and the type of subjects differs 
greatly between studies, the earlier findings of Hindriks do not necessarily contradict the 
present findings although additional analyses could.  
 Two main limitations for the application of the proposed method on Parkinson’s 
disease data as performed in this study arose: the number of samples and the use of MEG. 
The first limitation proved to be very important since the quality of the system 
identification procedure as applied in this study is known to be highly dependent on the 
amount of data samples [73]. In this study, however, the amount of samples was confined 
which restricted the estimation of probability transitions needed to calculate the Kramers-
Moyal coefficients thereby hampering the quality of the extracted dynamics [49]. For a 
more thorough estimation of the coefficients and thus the network dynamics, an increase 
in the number of data samples are highly recommended either through more trials or 
longer trial length. Note that increasing sample size by an increased sample frequency is 
not a solid solution to this problem since this only offers a more detailed view on a 
system’s dynamics rather than increasing the dynamical scope covered by the data.  
 The second limitation involves the stationarity of the process under study. One has to 
keep in mind here that throughout the procedure I assume the dynamical process under 
study to be stationary, i.e. it is a Markov process. To test for this, the experimental data 
should obey the Chapman-Kolmogorov equation as presented in the Methods; however, 
this was beyond the scope of this study. Also, when measuring brain processes, especially 
during resting-state, at longer time scales this criterion may no longer be valid. I would 
like to stress here that the application of a system identification method of the dynamical 
brain network during resting-state critically depends on the trade-off between a large 
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enough number of samples to assure quality of the estimation on the one hand and 
limiting the number of samples such that stationarity is retained on the other hand. There 
are a number of possibilities to work around this trade-off that I would like to briefly 
propose here: it would be possible to increase the quality of the probability transitions by 
limiting the degrees of freedom by parameterising these expected probability transitions. 
On the other hand, extending the experimental recording time (e.g. by repetitive recording 
[73] to obtain more samples could be used to greatly enhance the quality of the 
procedure. However, this will induce additional time scales to be incorporated in the 
experimental design and subsequent analysis that may require a change in the 
experimental paradigm. A more in-depth study into the stationarity constraint and the 
discussed trade-off was beyond the scope of this study. However, since both stationarity 
and the number of samples are of great importance of the quality of Kramers-Moyal 
coefficient estimation and thereby the proposed system identification approach; hence, 
this could certainly be a subject of further study.  
 The second limitation one should consider is the use of MEG for the assessment of 
Parkinson’s disease patients. Since early stage Parkinson’s disease is considered a 
pathology of the subcortical regions [83-85] the need for an analytical approach assessing 
the cortical regions using MEG seems small. However, MEG abnormalities have been 
reported to be present from newly-diagnosed Parkinson’s disease patients onwards [2, 86] 
suggesting that cortical degeneration is already present at onset of pathology. Therefore, I 
do not consider this a limitation for the approach. Another limitation involving the use of 
MEG is volume conduction. This bias is especially likely to influence source data (raw MEG 
data) as used in this study: that is, MEG sensors are likely to pick up activity originating 
from the same source, possibly causing a positive bias in the calculation of the global 
synchronisation 𝑟 for subjects. However, since the proposed approach focuses on detecting 
between-subject differences in 𝑟 rather than within-subject differences volume conduction 
is not considered to be an issue.  
 A recommendation for the application of the proposed approach would be to employ 
MEG data involving motor or attention tasks instead of resting-state MEG, thereby inducing 
a higher level of global synchronisation. The presented results showed that resting-state 
MEG data entails the partially synchronised regime [0.1,0.5] where motor or attentional 
tasks induce event-related synchronisation and desynchronisation [87] with reported 
differences in synchronisability between Parkinson’s disease patients and healthy controls 
[88-90]. The system identification approach could prove to identify these differences 
between subjects based on MEG measurements during tasks, however, more research is 
needed. 
 To conclude, I was able to successfully apply a system identification approach based 
on the estimation of Kramers-Moyal coefficients on resting-state MEG data of Parkinson’s 
disease patients. Taking into account the suggested limitations and recommendations, the 
proposed method could provide medical assessors with an unbiased tool to classify 
Parkinson’s disease patients and offers possibilities for the extrapolation to other 
neurodegenerative diseases known to affect cortical synchronisability. Additionally, it could 
offer a solid approach to gain further insight into hubness of brain processes known to 
function in the self-organised critical regime and could prove as a prognostic tool in NDDs 
to predict disease progression. However, further research is needed.  
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Appendix A – Network Validation 

Complex network measures were used to evaluate the preferential rewiring procedure and 
the corresponding developed network topology. These measures are: clustering coefficient 
𝐶, characteristic path length, efficiency and centrality. A total of hundred repetitions were 
used to calculate each of these measures as a function of rewiring step 𝑆. Results were 
compared to Erdös-Rényi random networks with similar topological constraints (Figure A1).  

First thing to notice is that all complex network measures converge to values expected in 
random graphs over 𝑆. Interestingly, although converging, both clustering coefficient (top 
left panel, Figure A1) and local efficiency (bottom left panel, Figure A1) still exhibit values 
not consistent with those expected for random graphs. The high clustering coefficient with 
a low characteristic path length qualifies the evolving network as small-world [38]. Typical 
features of such a network include enhanced synchronisability and signal propagation.  
 The probably most profound characteristic of a network topology entails the degree 
distribution. If the degree distribution of a network follows a power law, regardless of any 
other structure, it is said to be scale-free, i.e. 
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Figure	  A1	  |	  Complex	  network	  measures	  as	  calculated	  for	  the	  preferential	  rewiring	  networks	  (solid	  lines)	  as	  
a	  function	  of	  rewiring	  𝑺	  and	  random	  networks	  (dotted	  lines).	  Most	  measures	  calculated	  for	  the	  preferential	  
rewiring	  network	  converge	  to	  random	  network	  values	  at	  𝑺 = 𝟏𝟎𝟎	  except	  for	  the	  clustering	  coefficient	  and	  
local	  efficiency. 
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These networks lack a characteristic degree or scale and typically have an exponent 
2 < 𝛼 < 3. A classical method of inducing a hub-rich scale-free topology has been proposed 
by Barabasi and co-workers [25], although this does include increasing the node amount. 
Here, I chose a different methodology proposed by Xie and co-workers [27] adopting a 
non-growing network as to better approach empirical data (i.e. current knowledge of the 
human brain as a network does not 
agree with increases in brain regions 
or neurons) and exclude influences of 
𝑁  or 𝑘  on any (network) measures. 
In Figure A2 is illustrated how the 
degree distribution flattens during 
rewiring, with a general increase in 
lower degree nodes suggesting a 
downward switch in node modus if 
rewiring would be elongated. 
Interestingly, I also observe a small 
but profound increase in relatively 
high degree nodes, i.e., hubs as 
rewiring step increases.  
  

Figure	  A2	  |	  Degree	  distribution	  as	  function	  of	  rewiring	  step	  𝑺.	   
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