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Abstract

We modified the degree of muscle synergy, i.e. how much two muscles have to coordinate, and
studied the effect of this manipulation on cortico- and intermuscular coherence. 16 healthy subjects
performed a visual feedback task in which they controlled a cursor displayed on a monitor by
pressing compliant pinch grip force sensors with both hands. The horizontal position of the cursor
was determined by the difference between left and right forces. We manipulated the sensitivity of
the cursor for this difference, creating three conditions: low, medium, and high synergy level.
Cortical activity was measured using a 64-channel EEG system, and muscle activity using 8x8 high-
density EMG electrode grids on the FPB muscle of both hands. Following the uncontrolled manifold
framework, the degree of muscle synergy was quantified as the ratio Ry between the variability
along the dimension that the muscles leave uncontrolled (sum of bimanual forces) and the variability
along the dimension that the muscles do control (difference between bimanual forces). We
determined this both in time and frequency domain. Cortico- and intermuscular coherences were
estimated in terms of EEG-EMG and EMG-EMG coherence, respectively. The manipulation worked as
intended, i.e. Ry was highest for the high synergy condition and lowest for the low synergy condition.
In the frequency domain, Ry followed a similar pattern in the 0 - 0.5 Hz and for 2+ Hz frequency
ranges. For the 0.5 — 2 Hz frequency band this pattern was inverted. The high synergy condition
showed highest intermuscular coherence and lowest corticomuscular coherence, the low synergy
condition showed the opposite. These results support the idea that corticomuscular and
intermuscular coherence reflect two distinct neural pathways. Corticomuscular coherence reflects
direct innervation to individual muscles, while intermuscular coherence reflects a diverging pathway
that makes coordination between muscles possible (i.e. muscle synergies).

Keywords: Muscle synergy, corticomuscular coherence, intermuscular coherence, functional
connectivity
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1. Introduction

1.1 The Bernstein Problem

In everyday life, the human motor system is faced with a wide range of possibilities how to
successfully perform a specific movement, such as grabbing an object with the hand. That is, there is
a large set of possible parameter values (e.g. combinations of joint angles) that can lead to the
desired end result (i.e. grabbing the object). The central nervous system (CNS) has to control and
coordinate these many degrees of freedom (DOFs) of the neuromuscular system and select a
movement trajectory from a range of possible solutions. This redundancy is evident on multiple
levels of analysis (e.g. muscle activation and joint kinematics) and imposes a large computational
load on the CNS. Bernstein was one of the first to address this apparent “redundancy or DOFs
problem” of our nervous system, which is also referred to as “The Bernstein Problem” (Bernstein,
1967; Latash, Scholz, & Schoner, 2007; Tuller, Turvey, & Fitch, 1982; Turvey, Fitch, & Tuller, 1982).

How our nervous system solves this problem is a fundamental question in the field of motor control
and many different solutions have been proposed (Latash et al., 2007; Nazarpour, Barnard, &
Jackson, 2012). Some researchers propose a reduction of the number of DOFs to lower the
computational load on the CNS (Bernstein, 1967; Vereijken, Emmerik, Whiting, & Newell, 1992),
while others suggest that the nervous system actually uses this redundancy to optimally achieve the
movement goal (Diedrichsen, Shadmehr, & lvry, 2010; Latash et al., 2007; Scott, 2004; Todorov,
2004). These solutions to the degrees of freedom problem are generally referred to as ‘muscle
synergies’, although models and implementations of these synergies vary across research groups.

1.2 The Concept of Muscle Synergies

Muscle synergies are often described as being imposed by anatomical architecture, thus forming a
low-level constraint. According to this interpretation a muscle synergy is a specific pattern of relative
levels of muscle activation, imposed at the level of the spinal cord, i.e. as an interneuronal module
(Bizzi & Cheung, 2013). These low-level muscle synergies may also result from couplings between
muscles at an even lower level of organisation arising from e.g. limb biomechanics (Ting, Chvatal,
Safavynia, & Mckay, 2012; Ting & McKay, 2007), but they require additional neural structures to
incorporate these biomechanical properties into specific synergies (Bizzi & Cheung, 2013). The
central nervous system can flexibly combine these muscle synergies to generate the wide range of
movements needed in everyday life. In this way, the computational load for higher centres of the
central nervous system is strongly reduced as higher centres only control a small number of
variables on the level of the movement task, instead of controlling the large number of parameters
in the neuromuscular system (Latash et al., 2007).

An alternative perspective is that rather than reducing the number of DOFs by low-level constraints,
the nervous system actually exploits this redundancy to optimize movement performance
(Diedrichsen et al., 2010; Latash, Scholz, & Schoner, 2002; Latash et al., 2007; Scott, 2004; Todorov,
2004) or to successfully respond to perturbations (Kelso, 2008). Hence, in this view synergies are not
constraints that reduce the number of DOFs, but synergies emerge from high-level control policies
to optimize movements (Latash et al., 2007). Evidence for this comes from experiments showing that
the central nervous system selectively controls movement variability in the task-relevant dimensions
while leaving the remaining dimension uncontrolled (i.e. the uncontrolled manifold (UCM)), thus



effectively buffering variability in task-irrelevant dimensions (Latash et al., 2007; Nazarpour et al.,
2012). Moreover, this UCM framework provides an experimental approach to quantify and
experimentally manipulate muscle synergies. For example, Nazarpour et al. (2012) showed that
within a few trials subjects learn to use synergies between arbitrary muscle pairs depending on
abstract task demands.

1.3 Implementation of Muscle Synergies in the Central Nervous System

Irrespective of the theoretical perspective, most studies on muscle synergies are based on a
functional description of a muscle synergy, i.e. at the level of limb movements and muscle
activation. Little is known about how muscle synergies are implemented in the central nervous
system and most physiological mechanisms remain speculative. Bizzi & Cheung (2013) suggest it is
important to distinguish between phylogenetically older and newer descending motor systems. The
older system contains (diverging) descending efferent neurons that innervate spinal interneurons
and activate spinal modules, whereas the newer system involves direct innervations of spinal
motoneurons of individual upper limb muscles to further sculpt activations of specific muscles.
Although these pathways can only be measured directly using invasive recording techniques, the
effect of direct corticospinal projections can be assessed using corticomuscular coherence* (Baker,
Olivier, & Lemon, 1997; van Wijk, Beek, & Daffertshofer, 2012). Likewise, the diverging projections of
the older pathways may be captured by intermuscular coherence, since they would result in
common oscillatory input to distinct muscles (Boonstra & Breakspear, 2012; Boonstra, Daffertshofer,
et al., 2009; Farina, Negro, & Jiang, 2013).

Although there is ample evidence that corticomuscular coherence reflects direct corticospinal
projections (van Wijk et al., 2012), the suggestion that intermuscular coherence specifically captures
older motor systems with more diffuse projections remains speculative. Experimental results
suggest that corticomuscular and intermuscular coherence represent different descending pathways
(Boonstra, van Wijk, Praamstra, & Daffertshofer, 2009). They found intermuscular coherence
between bilateral homologous hand muscles when the subjects were asked to stabilize force output
and corticomuscular coherence during constant force output, suggesting task dependence for use of
different descending pathways. Intermuscular coherence may specifically capture a common
excitatory drive to muscles that work together, i.e. in a synergy (Boonstra, Daffertshofer, et al.,
2009). For example, two extrinsic hand muscles whose activities were tightly coupled for a precision
grip task showed intermuscular coherence, implying that here descending pathways diverge to
control the two muscles as a single unit (Fuglevand, 2011). Similarly, Nazarpour et al. (2012) found
intermuscular coherence between two ipsilateral hand muscles synergistic in precision grip and they
found a task-dependent modulation of this coherence, i.e. intermuscular coherence was significantly
higher when the task required higher coordination between the muscles.

In this study we test the relationship between bilateral muscle synergies and intermuscular and
corticomuscular coherence, by experimentally manipulating the degree of muscle synergy. When a
relatively stronger synergy is required (muscles have to coordinate) we expect to find higher levels
of intermuscular coherence and lower levels of corticomuscular coherence reflecting a larger
contribution from diverging projections in phylogenetically older motor systems. In contrast, when a
relatively weaker synergy is required and muscles can be controlled separately, we expect higher

*Coherence quantifies the coupling between two signals (Bruns, 2004). For corticomuscular coherence that is between EEG/MEG and EMG,
for intermuscular coherence that is between EMG and EMG of different muscles.
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levels of corticomuscular coherence and lower levels of intermuscular coherence reflecting a larger
contribution from direct corticospinal pathways. This result would mean that our nervous system
can flexibly regulate the contribution of muscle synergies depending on task demands and that
those muscle synergies can be assessed with intermuscular coherence.

2. Materials and Methods

2.1 Subjects

Sixteen healthy right-handed subjects (8 female, age = 25.5 * 4.3) volunteered in the study. The local
ethics committee at the Faculty of Human Movement Sciences, VU University Amsterdam approved
the experimental protocol and prior to the recordings each subject provided written informed
consent.

2.2 Experimental Protocol

Subjects performed a bimanual task in which the degree of synergy between homologous hand
muscles was experimentally manipulated, while we assessed intermuscular and corticomuscular
coherence.

Subjects were instructed to control a cursor displayed on a computer monitor in front of them by
generating bimanual force by pressing a compliant force sensor using a pinch grip with each hand
(Fig. 1A and B).

Y

target

F1

L]
cursor

Figure 1. Setup and Protocol. A) Force level projection. Cursor and target are the visual feedback
displayed on the monitor. B) Custom made compliant pinch grip force sensor and high density
electrode grid on Flexor Pollicis Brevis.

The position of the cursor is determined by a linear weighting of the two forces:

X\ _ (cl11 cl12 <F1>

(y) - (c21 c22) “\E
where x and y are the screen coordinates and F; and F,. are the force levels generated by the left
and right hand, respectively (Fig. 1A). The 2x2 projection matrix ¢ converts the generated force

levels to screen coordinates. The cursor moves up when force is applied to both sensors and stays in
the starting position when no force is applied (red dot in Fig. 1A).



The required level of bilateral muscle synergy was experimentally manipulated by changing the
projection matrix ¢ (Nazarpour et al., 2012). For example, when

c= (—10 10)
1 1
the x-position of the cursor is relatively sensitive to differences between the two force levels so a
relatively strong synergy between the two hands is required to perform the task successfully (i.e. get

the cursor in the circular target). That is, even a small difference between F; and E. will move the
cursor sideways. In contrast, when

oo (—01.01 0.;)1)

the x-position of the cursor is relatively insensitive to differences between the two force levels, i.e. a
relatively weak synergy between the two hands is required. For the latter case, the total force needs
to be controlled to move the cursor up or down, but a large variability in the ratio of the two force
levels is tolerated (bilateral forces are allowed to differ). Nazarpour and co-workers showed in a
similar experiment that when imposing such a task-relevant dimension within cursor space, subjects
automatically buffer their movement variability in the task-irrelevant dimension within a few trials
(Nazarpour et al., 2012).

Subjects were instructed to track a visual target by moving the cursor on the monitor. At the start of
a trial, the target was in the starting position (see cursor in Fig. 1A). During the first 5 s of a trial, the
target moved linearly to the final target position (force ramp), where it stayed for the remaining 10 s
of the trial (constant force). The inter-trial interval was 5 s during which the performance score was
presented (percentage of time the cursor was in the target). After the rest period the target
automatically reappeared at the starting position and a new trial started. Figure 2 shows an example
of a single trial. The duration of a single trial was 20 s.

Target position

25

a.u.

t[s]
Figure 2. Target position. Single trial time series of vertical target position in arbitrary units (a.u.).

The required level of bilateral synergy was experimentally varied in three conditions (low, medium,
high) by varying the projection matrix c:

o = (—01.01 0.;)1)

o = (—01.33 0.33)

3= (—110 110)



Each projection matrix was used in a block of 20 trials, i.e. the duration of a block was 400 s or about
7 minutes. In addition to the required level of synergy, the total force level was varied to prevent
participants from learning the exact force level and to ensure that they were dependent on visual
feedback for successful task performance. The force level necessary during the constant force part
varied between two levels (1.7 N and 2.1 N per hand) and trials with different force levels were
randomized within a block. The order of the 3 blocks was counterbalanced between subjects.
Between the blocks there was a two-minute break. Participants were motivated to perform the task
as good as possible (i.e. follow the target with the cursor) by promising a price for the participant
with the best average performance.

2.3 Data Acquisition

Corticomuscular coherence (CMC) and intermuscular coherence (IMC) were assessed using
electroencephalography (EEG) and high-density surface electromyography (HDSEMG). EEG was
recorded using a 64-electrode nylon cap placing the electrodes according to the extended 10-20
system and amplified using a 64-channel Refa amplifier (TMSi, Enschede, The Netherlands; sample
rate 1024 Hz). HDSEMG was recorded using two 64-channel (8x8, IED 4 mm) electrode grids (Fig. 1B)
and amplified using a 128-channel Refa amplifier (TMSi, Enschede, The Netherlands; sample rate
2048 Hz). The grids were placed over the flexor pollicis brevis (FPB) muscle of both hands. Pinch grip
force was recorded using a custom-made force sensor (Boonstra et al., 2005) (Fig. 1B) and amplified
using a National Instruments amplifier (NI SCXI-1121, sample rate 1000 Hz). At the start of each trial,
the force sensor amplifier sent a synchronization pulse to both Refa amplifiers, which was used to
align data offline.

2.4 Preprocessing

The data analysis was performed in Matlab (2012a, The MathWorks, Natwick, MA, USA) using the
Fieldtrip toolbox for EEG/MEG-analysis (http://www.ru.nl/neuroimaging/fieldtrip; Oostenveld, Fries,
Maris, & Schoffelen, 2011). The EMG, EEG and force signals were aligned using the aforementioned
synchronization pulse and segmented into separate trials.

Force signals were linearly interpolated to 2048 Hz. Only the constant force part of each trial was
selected to asses bilateral muscle synergies, i.e. from t=6 to t=15 s (excluding the first second of
constant force to avoid transient activity).

EEG signals were linearly interpolated to 2048 Hz and high-pass filtered (Butterworth, second order,
cut off 1 Hz). The signals were band-stop filtered at 50 Hz and its higher harmonics to remove line
noise. ICA was used to remove eye-blinks, eye-movements and muscle activity from the EEG data
(Jung et al., 2000).

Bad HDSEMG channels were removed and on average 5914 channels per hand were used for further
analysis. The HDSEMG signals were re-referenced to the reference electrode (placed on the process
styloid of the radius), high-pass filtered (Butterworth, second order, cut off 10 Hz) and band-stop
filtered at 50 Hz and its higher harmonics to remove line noise. Principal component analysis was
applied to the HDSEMG signals to reduce the effects of amplitude cancellation and of heterogeneity
in the motor unit action potentials (Staudenmann, Kingma, Daffertshofer, Stegeman, & van Dieén,
2006; van de Steeg, Daffertshofer, Stegeman, & Boonstra, 2014). After removing the leading



components the signals were rectified via the analytical signal constructed using the Hilbert
transform. This provides an instantaneous amplitude estimate of the EMG signal, which reflects the
net input to the motor unit pool. Rectification is preferred when assessing common input between
EMG signals at low force levels (Boonstra & Breakspear, 2012; Farina et al., 2013; Myers et al., 2003).
Rectified EMG signals were averaged across all grid electrodes for each hand separately (van de
Steeg et al., 2014) .

2.5 Data Analysis

2.5.1 Muscle Synergies

Muscle synergies can be quantified according to the UCM method as

VUCM
Ry = 1
v VORT )

Where Vycu is the variability in the dimension irrelevant for task success (i.e. the uncontrolled
manifold) and Vygrr the variability in the dimension orthogonal to the UCM, i.e. the dimension
relevant for task success (Latash et al., 2002, 2007). Strictly we don’t have a completely uncontrolled
manifold here, since subjects have to control both DOFs in the task parameters (x- and y-position of
cursor). Nevertheless, we manipulate the degree with which both DOFs need to be controlled
(Nazarpour et al., 2012) and use the UCM method here to quantify the changes in bimanual
coordination.

Here we use the variance within a trial as measure of movement variability (Scholz, Kang, Patterson,
& Latash, 2003). This approach is preferable when the number of trials is small. Movement error was
computed by subtracting the target forces from the measured force signals. To obtain fluctuations in
the UCM and ORT dimensions the error signal was then rotated by 90 degrees. That is, in this
experimental setup the ORT and UCM dimensions represent the difference and the sum of the two
forces, respectively. In this experiment the difference of the two forces is the manipulated
performance variable and hence is considered the ORT dimension, i.e. the controlled manifold.

The variances Vi and Vorr Were calculated within each trial. The ratio of these variances gives the
guantitative measure of synergy (Ry) according to equation (1). When Ry < 1 this indicates no synergy
is present, whereas Ry > 1 indicates a synergy between bilateral hand muscles (Latash et al., 2007).
To correct for the inherent skewness of ratio data, the R, values were log transformed before
averaging to project the data on the interval of [-oo, o], where Ry, > 0 indicates a synergy and R, <0
no synergy (Verrel, 2010). The Ry values were then averaged over the 10 trials of each condition.

Previous studies have generally investigated the measure of synergy Ry in the time domain (Latash et
al., 2007). To investigate the time scale at which the bilateral synergy is established and investigate
the potential relationships with CMC and IMC, we here extend the measure of synergy Ry to the
frequency domain. Indeed, Scholz et al. (2003) already showed that there seem to be different time
scales involved in the structure of the variability. The power spectral density (PSD) describes the
distribution of the variance over frequency, such that the integral of the PSD across frequencies is
equal to variance of a signal. Hence equivalent to equation (1) the measure of synergy Ry in the
frequency domain is given by:



PUCM(f)

Ry(f) = Porr(F) (2

where Pycy(f) and Pygrr(f) are the PSD in the UCM dimension and the ORT dimension,
respectively. The PSD over the whole trial length was calculated using a multi-taper method based
on discrete prolate spheroidal sequences (Slepian sequences) as tapers (Mitra & Pesaran, 1999), i.e.
the data was multiplied by several orthogonal tapers and Fourier-transformed:

N
Xe(F) = ) welk) xg v 72t e
t=1

where X}, is the Fourier Transform of signal x, w; (k) the kt" orthogonal taper, f frequency, t time
and N the length of the signal. To get a spectral estimate at a certain frequency of interest, the
squared magnitudes of the orthogonally tapered estimates at that frequency are then averaged:

K
Sur(H) = 2 . e(DI? @
k=1
where Syt is the spectral estimate and K the total number of orthogonal tapers (Mitra & Pesaran,
1999). The amount of smoothing trough multi-tapering was set at + 0.2 Hz, which means a 0.4 Hz
smoothing box was used around each frequency of interest.

The quantification of muscle synergies in equation (2) directly relates to phase synchronization, in
that Pycu(f) signifies anti-phase locking and Pogr(f) in-phase locking between F; and F.. We
hence also investigated the coherence and relative phase between F; and F. to facilitate
interpretation. Complex coherency was estimated according to Rosenberg and co-workers
(Rosenberg, Amjad, Breeze, Brillinger, & Halliday, 1989) as

Pey (F)
V1P (D1Pyy ()]

where Cy,, is the complex valued coherency between signal x and y, (e.g. the two force signals), Py

ny (f) = (5)

and Py, the auto-spectra of signal x and y, respectively and P,, the cross-spectrum between signal x

and y. The magnitude-squared coherence (MSC) is then given by

MSny(f) = |ny(f)|2 (6)

and the relative phase between the two force signals is calculated as the argument of the complex
valued coherency.

2.5.2 Cortico- and Intermuscular Coherence

We localized the two sources in the brain showing maximal CMC with left and right hand HDSEMG
signals using a beamforming method, DICS (Dynamic Imaging of Coherent Sources) (Gross et al.,
2001; Schoffelen, Poort, Oostenveld, & Fries, 2011). Since we did not have access to individual
subjects anatomical MRI data, we used the volume conduction model, source model and MRI
templates integrated in the Fieldtrip toolbox (Holmes et al., 1998; Oostenveld et al.,, 2011;
Oostenveld, Stegeman, Praamstra, & Oosterom, 2003). Using this method, first the cross-spectral



density (CSD) between all EEG signal pairs and between all EEG signals and the HDSEMG signals was
calculated, again using a multi-taper method with a centre frequency of 23 Hz and +7 Hz of spectral
smoothing (sensor level analysis showed significant CMC in the 16-30 Hz range). We used the
averaged CSD over the z-scored data of all subjects to localize two average sources.

For each of the two locations of maximal CMC we constructed a spatial filter per subject that
allowed us to reconstruct virtual source signals. The virtual source signals calculated this way contain
a magnitude and a direction and hence yield three signals (in x, y, and z direction) for each solution
point. Singular value decomposition was used to select one dimension in the 3D space that explains
most variance, thus leaving us with one source signal per subject per hand.

Magnitude squared coherence between the virtual source signals and the averaged HDSEMG signals
(CMC) and between the averaged HDsSEMG signals of the two hands (IMC) was calculated over the
constant force part (t = 6 - 15 s). Again, a multi-taper method was used for spectral decomposition.
The amount of smoothing trough multi-tapering was set at +£1.5 Hz, which means a 3 Hz smoothing
box was used around each frequency of interest. Based on the grand averages the frequency ranges
of interest (showing significant coherence) were selected for statistical analysis.

2.6 Statistics

Statistical analysis was performed in IBM SPSS Statistics Version 21. A 3x2 repeated measures
ANOVA with within-subject factors synergy level and force level was used to test for significant
differences in Ry in the time domain between conditions at group level. Likewise, neural coherence
values in the frequency bands of interests were compared using the same 3x2 repeated measure
ANOVA. Hence four 3x2 repeated measures ANOVA were performed: R, CMC between the left hand
and it’s virtual source signal, CMC between the right hand and it’s virtual source signal and IMC
between both hands. A 3x1 repeated measures ANOVA with within-subject factor synergy level was
used for each frequency band of interest to test for significant differences in Ry (f). Likewise,
coherence values between left and right hand force signals were compared using the same 3x1
repeated measures ANOVA. The 95% confidence intervals of the coherence estimates were

determined through phase randomization.
3. Results

3.1 Muscle Synergies

Figure 3 shows force data of a representative participant and demonstrates the effectiveness of the
experimental manipulation: In the low synergy condition the two forces were allowed to differ from
each other (Fig. 3A and B) and the variability is most prominent in the ORT dimension (Fig. 3C). In
contrast, in the high synergy condition the two forces differ relatively little from each other and
variability is most prominent in the UCM dimension.
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Figure 3. Force data of exemplar participant. The rows show the three synergy levels (Blue = low
synergy level, black = medium synergy level, red = high synergy level). A) Time series of raw force
signals of both hands for three representative trials. B) Time series of error signals (force signals
relative to target signals). C) Cluster plot with on the horizontal and vertical axes force levels of the
left and right hand, respectively, at t = 12 s for all 16 participants. Values in panel C are relative to
the average over those trials. Ellipses show 95% confidence interval.

Ry is calculated according to equation (1) to quantify the level of synergy for each condition
separately. Figure 4 shows the average Ry values for each condition and shows a significant main
effect of synergy level (F (2, 30) = 182.36, p < 0.001). No significant main effect of absolute force
level or interaction effect was found. Ry < 0 and Ry > 0 quantify no synergy and synergy, respectively.
Hence, this analysis confirms that the conditions differ from each other as intended.

3
5 Figure 4. The level of muscle synergy Ry across
experimental conditions. Values are averaged over
- 1 the 10 trials per condition. Blue = low synergy
o 0 level, black = medium synergy level, red = high
I o synergy level. Bars show the average over
1 B edium  participants, error bars show the standard error of
I high the mean.
2 low high
force level

To investigate the time scale at which the bimanual synergy is established we extended the analysis
to the frequency domain. Figure 5 shows the power in both dimensions and Ry as a function of
frequency. As expected, most of the power can be seen in the lower frequencies (Fig. 5A and B). For
low frequencies (< 0.5Hz) the power in the orthogonal dimension decreases with increasing synergy
level (high condition). In contrast, the power in the UCM dimension increases with increasing
synergy level. Consequently, Ry is higher in the higher conditions for these low frequencies (Fig. 5C).
Figure 5D shows a different frequency profile for conditions 1 and 2 compared to condition 3: For
conditions 1 and 2 Ry is negative for very low frequencies (< 0.5Hz), positive for frequencies between
0.5 and 2 Hz, and then converges to 0 at higher frequencies. The frequency spectrum for condition 3

11



is largely opposite. The pattern of Ry at frequencies below 0.5 Hz largely corresponds to time-
domain analysis shown in figure 4, which is expected since these low frequencies contain most
power and thus largely determine the overall variance of the signals. The pattern of R, for
frequencies 0.5 — 2 Hz is the opposite showing the largest muscle synergy in condition 1 and 2 (R, >
0), which is strongly diminished in condition 3. In frequencies above 2 Hz the effect reverses again
and is similar to the effect seen in the lowest frequencies. ANOVA of Ry (f) showed significant effects
of synergy level for frequencies below 0.5 Hz (F (2,30) = 75.79, p < 0.001), for frequencies between
0.5 and 2 Hz (F (1.4,21.3) = 8.13, p = 0.005) and for frequencies above 2 Hz (F (2,30) = 6.56, p =
0.004).
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Figure 5. UCM analysis in frequency domain. The solid lines and bars represent grand averages,
averaged over the 20 trials per synergy level and averaged over all participants. The shaded areas
under the lines and the error bars in the bar graph represent the standard error of the mean. Each
colour shows one of the three synergy levels (blue = low, black = medium, red = high). A) Power
spectral density in the orthogonal dimension (psd ORT). B) Power spectral density in the
uncontrolled manifold dimension (psd UCM). C) R, in frequency domain. D) R, divided in and
averaged over three frequency bands, i.e.: (0-0.5 Hz, 0.5-2 Hz, 2-10 Hz). Note: psd ORT and psd UCM
are log transformed before plotting.

To further investigate the frequency relationship between F; and F, we assessed the coherence and
relative phase between both signals (Fig. 6). For condition 1 and 2 coherence was significant
between 0 — 1.5 Hz. For condition 3, coherence was significant over the whole frequency range.
When divided into the same frequency bands as Ry (Fig. 5D and 6B), ANOVA showed a significant
main effect of synergy level (F (2,30) = 4.54, p = 0.019) and of frequency band (F (2,30) = 59.48, p <
0.001) and no significant interaction effect. The phase difference shows that in condition 1 and 2
bilateral forces have an anti-phase relationship (i.e. about it rad) for frequencies between 0 — 0.5 Hz,
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while they have an in-phase relationship for frequencies between 0.5 — 2 Hz (i.e. about 0 or 2 rad).
For frequencies above 2 Hz the phase relationship becomes less consistent. In contrast, in condition
3 the bilateral force signals were in phase for all frequencies. The effects seen in R, (Fig. 5C and D)
and in MSC (Fig. 6A and B) largely agree. The most obvious difference is the large negative values for
Ry in conditions 1 and 2 in low frequencies (<0.5Hz), which is not directly reflected in the MSC, but
this is explained by the clear anti-phase relationship in those conditions and frequency band (Fig.
6C), i.e. a consistent anti-phase relationship gives a negative R, value.

06 05

MSC

0 1 2 3 4 5 <05 05-2 +2
freq [Hz]

low
medium
high

<0.5Hz 0.5-2Hz +2 Hz

Figure 6. Coherence and relative phase between bilateral force signals. The solid lines and bars
represent grand averages, averaged over the 20 trials per synergy level and averaged over all
participants. The shaded areas under the lines and the error bars in the bar graph represent the
standard error of the mean. Each colour shows one of the three synergy levels (blue = low synergy
level, black = medium synergy level, red = high synergy level). A) Magnitude squared coherence
between the two force signals (MSC). Dotted lines are the 95% confidence intervals for significant
coherence. B) MSC divided in and averaged over three frequency bands, i.e.: (0-0.5 Hz, 0.5-2 Hz, 2-5
Hz). C) Relative phase between the two force signals (A¢) divided in and averaged over the same
three frequency bands as in B. Short arrows are individual participants, long arrows are grand
averages.

3.2 Source Analysis

Using DICS we localized one source showing maximal CMC in the beta frequency range (23 + 7 Hz)
for each hand. Figure 7 shows the sources visualized on an MRI template (Holmes et al., 1998). The
coordinates of the sources in the MNI coordinate system are [4.7, 0.5, 5.5] cm and [-4.2, 0.0, 6.0] cm
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for the left and right hand, respectively. These sources are as expected in the contralateral motor
cortex.

Left hand

Right hand

Figure 7. Sources of maximal CMC. Upper row shows the source with maximal CMC with the left
hand EMG signal. Lower row shows the source with maximal CMC with the right hand EMG signal.
Orthogonal blue lines intersect at the maximal CMC voxel. Sources are displayed on an MRI
template.

3.3 CMC and IMC

To improve the estimation of common input, the leading 4 principal components were removed
from the HDSEMG signals (left hand 3.6 + 7.2, right hand 4.5 £ 6.0), and signals were reconstructed
using the remaining PCs (van de Steeg et al., 2014). The reconstructed EMG signals were then
rectified and averaged before coherence analysis.

As expected, CMC computed over the constant force interval was significant in the beta band (16-30
Hz; Fig. 8A). Beta-band coherence decreased with increasing synergy level for both absolute force
levels and for both sides, except for CMC with left hand between synergy level 1 and 2 (Fig. 8B and
C). In contrast, IMC was only significant in the alpha-band (5-12 Hz; Fig. 8A) and only in the high
synergy condition. IMC in the alpha-band increased at higher synergy levels (Fig. 8B and C). ANOVA
showed a significant main effect of synergy level for MSC for all three types of coherence, i.e.: CMC
between left hand and right cortex (F (2,30) = 12.25, p < 0.001), CMC between right hand and left
cortex (F (1.6,23.5) = 11.88, p = 0.001) and IMC between both hands (F (1.5,22.5) = 10.19, p = 0.002).
There is no significant interaction effect and only a small decrease in CMC at higher absolute force
levels between right hand and left cortex (F (1,15) = 7.09, p = 0.018) and a small decrease in IMC at
higher force levels (F (1,15) = 5.15, p = 0.038).
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Figure 8. Magnitude squared coherence (MSC). Lines and bars are averages over participants,
shaded areas and error bars in bar graphs are standard error of the mean and dash-dot lines are
the 95% confidence interval for significant coherence. Columns depict from left to right: MSC
between left hand and right motor cortex, MSC between right hand and left motor cortex and MSC
between both hands. A) Grand Averages. B) Coherence spectra at the three synergy levels (blue =
low synergy level, black = medium synergy level, red = high synergy level). The upper and lower
row in B show absolute force level low and high, respectively. C) Averaged over significant
frequency bands (16 — 30 Hz for CMC and 5 — 12 Hz for IMC). Colour coding is same as in B.

4, Discussion

In this study we investigated the neurophysiological mechanisms of muscle synergies using

corticomuscular and intermuscular coherence. We experimentally manipulated the degree of muscle

synergy and simultaneously measured brain activity (EEG) and muscle activity (HDSEMG). The results

of our analysis of muscle synergies in the frequency domain suggest that there are three distinct
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timescales at play in the emergence of muscle synergies. The results of the coherence analysis are in
accordance with our hypothesis, i.e. with an increasing degree of muscle synergy corticomuscular
coherence decreases whereas intermuscular coherence increases.

4.1 Muscle Synergies

We used the Uncontrolled Manifold (UCM) method to quantify the synergy between bilateral hand
muscles, which showed that the manipulation had the intended effect. Hence, in the trials where a
strong synergy was required, the variance within a trial was much larger in the dimension irrelevant
for task success than in the dimension relevant for task success. In contrast, in the trials where a
weak synergy was required, the variance was structured in the opposite direction (Fig. 4).

Scholz et al. (2003) found different timescales involved in the structure of variability. Their findings
suggest that there is control on two hierarchical levels, i.e. a high level voluntary control that
reduces the variance in the task-relevant dimension (Vogr) on a larger timescale (> 250 ms), and a
low level involuntary control that channels the variance into the task-irrelevant dimension (Vycy) on
a smaller timescale (< 250 ms). To test for a difference in timescales in bilateral synergies, we
extended the UCM analysis to the frequency domain by using the power spectral density in the two
dimensions (Fig. 5). Indeed, our results show a similar difference in the timescales of PSDgrr and
PSDycw, i.e. below 0.5 Hz PSDggy is smaller in the high synergy condition, whereas above 0.5 Hz there
is an opposite effect. PSDycy is larger in the high synergy condition across all frequencies. This might
indeed reflect that high-level voluntary control operates on slow timescales to minimize variance in
the task-relevant dimension, whereas the larger variance in the uncontrolled manifold might reflect
an involuntary error correction mechanism. The apparent difference in timescales between our
findings and their findings (Scholz et al., 2003) reflects their choice of an arbitrary cut-off frequency
of 4 Hz (i.e. 250 ms). By calculating Ry in the frequency domain there is no need to choose a priori an
arbitrary cut-off frequency.

Our results for Ry in the frequency domain suggest that there are three different timescales at play
(Fig. 5). In low frequencies (0 — 0.5 Hz) Ry is highest in the high synergy condition, whereas in
frequencies roughly between 0.5 and 2 Hz this effect is largely the opposite. For frequencies higher
than 2 Hz the effect switches again, i.e. Ry is highest in the high synergy condition. While the effects
seen in the low and high frequency ranges (0 — 0.5 Hz and +2Hz) are as expected, the effect in the
0.5 to 2 Hz range is somewhat surprising. The higher variance in the task-relevant dimension in the
high synergy condition may result from delays in feedback control. Visually guided responses have a
feedback delay of about 200 — 300 ms, which accounts for oscillations in force signals with a period
length of twice the delay time (i.e. 400 — 600 ms) when visually tracking a target force (Miall &
Wolpert, 1996; Miall, 1996). In the high synergy condition each hand is tightly tracking the visual
force signal produced by the other hand, and because of the visual feedback delay, there is always a
small phase difference between the two forces. Indeed, our results of the coherence and relative
phase analysis (Fig. 6) show that for the high synergy condition forces are in phase for most of the
frequencies, except for 0.5 — 2 Hz where there is a small phase difference. This small phase
difference may reflect the visual feedback delay and explains the lower Ry values in this frequency
range. In contrast, the lower synergy conditions (1 and 2) required less tight coupling since the
target x-position is much less sensitive to differences between the two force signals. These
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conditions were perceived much easier for subjects and it was easier for the hands to track each
other, resulting in smaller phase differences between forces (Fig. 6) and higher R, values (Fig. 5).

4.2 CMC and IMC

CMC and IMC were significant in the beta (16-30 Hz) and alpha (5-12 Hz) frequency bands,
respectively (Fig. 8). These frequency ranges are comparable with previous findings studying CMC
and IMC in similar tasks (Baker et al., 1997; Boonstra, van Wijk, et al., 2009). There was a significant
effect of synergy level both on CMC and IMC: CMC decreased and IMC increased at higher levels of
bimanual synergy. These results are in agreement with the notion that corticomuscular and
intermuscular coherence reflect two distinct neural pathways (Boonstra, van Wijk, et al., 2009) and
support the hypothesis that neural motor control is divided in a phylogenetically older system
containing descending projections driving spinal interneuronal modules and a phylogenetically
newer system containing monosynaptic innervations to motoneurons of individual muscles (Bizzi &
Cheung, 2013). The older pathway then diverges at the level of the spinal modules to innervate
separate muscles coordinated with a common drive (i.e. muscle synergy) and results in
intermuscular coherence. The newer pathway acts to further shape the activation of specific
muscles, making it possible for higher primates and humans to control hand movements in a highly
controlled manner. Depending on the required level of muscle synergy the contribution of both
pathways is varied resulting in opposite changes in corticomuscular and intermuscular coherence.

An important issue that has been raised about studying muscle synergies is that it is difficult to
distinguish low- and high-level interpretations of synergies, since in most studies the predicted
synergies could be explained by appropriate hardwired circuits or biomechanical links (Valero-
Cuevas, Venkadesan, & Todorov, 2009). The same goes for most studies investigating intermuscular
coherence, i.e. they involve ipsilateral antagonist muscles often with direct anatomical connections
or even motor units within a muscle (e.g. Bremner, Baker, & Stephens, 1991; Datta, Farmer, &
Stephens, 1991; Fuglevand, 2011; Winges, Kornatz, & Santello, 2008). Nazarpour and colleagues
tackled this problem by introducing abstract tasks where arbitrary muscle pairs have to coordinate
(Nazarpour et al., 2012). They found that muscles that have no direct anatomical connection could
rapidly form coordinated synergies if required by an abstract new task. They suggest that even if
low-level anatomical synergies may be used, these can be readily overwritten and that the extensive
divergence and convergence in the corticospinal system forms a substrate on which abstract task-
dependent synergies emerge from optimization for high-level task requirements. In the current
study, similar to Nazarpour et al. (2012) we avoid the problem of biomechanical links altogether by
looking at bimanual homologous hand muscles. The bimanual muscle synergies studied here do not
rule out a role of hardwired spinal interneuronal modules causing most of the coordination.
However, the large task-dependent differences seen in both the behavioural data and the
electrophysiological data suggest that even if there are low-level spinal modules involved, most of
the coordination seen in our results comes from flexible high-level control policies.

4.3 Final Remarks

Our extension of the UCM analysis in the frequency domain suggests movement variability is not
equally structured across timescales. It would be interesting to revisit some of the traditional
experiments of the group of Latash and use the UCM analysis in the frequency domain to investigate
all the different timescales that are involved.
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The current findings provide us with a method to directly measure muscle synergies on a
neurophysiological level (i.e. by combining intermuscular coherence with corticomuscular
coherence). This can be used in clinical research in patients with diseases that prevent effective
muscle synergies to occur, or diseases that show pathological synergies (e.g. stroke). If the problems
in specific patient groups with muscle synergies are better understood in terms of the
neurophysiology, it might help to develop more effective rehabilitation interventions (e.g. including
electrophysiological stimulation).

The use of a volume conduction model, a source model and MRI based on templates for source
analysis is not ideal and our analysis would benefit from using individual anatomical data, but if
individual MRl is not available using templates is a good alternative.
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