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Summary  
Background and objectives. Prediction of functional outcome post stroke has been a focus for several 
years. Electroencephalography (EEG) can be used to determine parameters such as the Brain Symmetry 
Index (BSI) and Delta Alpha Ratio (DAR). These parameters may improve prediction of functional 
recovery of the upper extremity post stroke. Most studies focused on the acute phase. Therefore, 
changes in EEG during recovery are poorly investigated. The first aim of the present study was to 
investigate whether the BSI and DAR differ between chronic stroke patients and healthy individuals. The 
second aim was to investigate whether comparing normalized power spectra over a range from 1 to 49Hz 
between hemispheres and between subjects could be complementary to respectively the BSI and DAR.  
Methods. 64-channel EEG data was acquired from 8 young healthy individuals, 4 chronic stroke patients 
(≥6 months post stroke) and 4 healthy roughly age-matched older adults. Asymmetry in brain activation 
was investigated by calculating the BSI and comparing the normalized power spectra between the 
hemispheres. Differences in relative spectral power were investigated by calculating the DAR and 
comparing the normalized power spectra between the groups. Power spectra comparisons were 
conducted using a wavelet-based functional ANOVA (wfANOVA).  
Results. A Kruskal-Wallis test revealed that the BSI differed between the groups (2(2) = 8.487, 
P<0.05). Post-hoc analyses with Bonferroni correction revealed that the BSI of chronic stroke patients 
(Mdn=0.21, IQR=0.018) is significantly higher compared to the young (Mdn=0.11, IQR=0.026) and 
older (Mdn=0.11, IQR=0.004) controls (P<0.001). A wfANOVA revealed no differences between the 
normalized power spectra of the hemispheres in healthy individuals. By contrast, all chronic stroke 
patients showed significant differences in relative power in the alpha and theta band. A Kruskal-Wallis 
test showed that the DAR did not differ between the groups (2(2) = 3.429, P=0.180). Also the wfANOVA 
showed no differences between the normalized power spectra of the groups. 
Conclusions. It was concluded that in the current study it was possible to discriminate chronic stroke 
patients from healthy individuals based on the BSI, but not based on the DAR. With regard to both 
parameters, a wfANOVA method is concluded to be complementary as it provides insight into the 
differences in relative spectral power between the hemispheres and groups. A BSI based on the theta 
band only, as well as a DAR based on the lesioned hemisphere may augment the discrimination between 
chronic stroke patients and healthy controls, while a BSI based on alpha activity may not. The BSI and 
DAR are both suggested to be investigated in a longitudinal study, to evaluate their development during 
recovery and their capacity to predict functional recovery. 
  
 
Keywords: Stroke; EEG; Brain Symmetry Index; Delta Alpha Ratio; wavelet based functional ANOVA.  
 
Abbreviations: EEG = Electroencephalography; BSI = Brain Symmetry Index; DAR = Delta Alpha Ratio; wfANOVA = 
wavelet-based functional ANOVA; ARAT= Action Research Arm Test; FMA = Brunnstrom Fugl-Meyer Assessment.  
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1 Introduction 

Worldwide 15 million people suffer a stroke each year. Stroke comes with a high mortality rate 
(approximately 18%) and is considered to be the second leading cause of mortality (Towfighi and 
Saver, 2011). Besides, it is the most common cause of severe long-term disability (Adamson et al. 
2004). Approximately 80% of the stroke survivors suffer from a paresis of the upper extremity 
immediately after stroke onset (Nakayama et al., 1994). Unfortunately, only about 30% of the 
survivors will regain some dexterity six months post stroke (Wade et al., 1983; Sunderland 1994; 
Dobkin 2005; Nijland et al., 2010). In addition, the majority of patients will continue to experience 
functional limitations of the upper limb in daily living (Wolf et al., 2006). Being able to use the 
upper extremities is important in completing basic activities of daily living such as feeding, 
dressing, toileting and bathing independently (Veerbeek et al., 2011). In addition, also during 
translational movements the upper limbs are used (Snoek et al., 2004). Therefore, impairments of 
the upper extremities are associated with diminished health related quality of life (Nichols-Larsen 
et al., 2005). If present, the functional motor recovery after stroke is complex and may involve two 
complementary recovery processes referred to as restitution and substitution. Restitution assumes 
that improvements in function are due to ‘true’ neurological repair, in other words recovery of 
neural pathways that were damaged due to stroke. Substitution includes adaptive processes like 
compensation and reorganization (Rothi and Horner, 1983; Van Kordelaar et al., 2012; Kwakkel et 
al., 2004).  

The time course of these complementary processes and the prediction of functional recovery 
of the upper extremity after stroke are crucial for general understanding of recovery post stroke 
and are of major interest for stroke survivors and caregivers. This has been a focus of 
rehabilitation researchers for several years.  

Early prognosis of functional recovery after stroke may give clinicians additional information 
about the recovery progress. This could help to decide which therapy may be more useful and will 
help to optimize treatment goals. For example, if some return of dexterity is predicted, intervention 
should be focused on improving function of the paretic arm, while in case of a poor prognosis 
clinicians may teach patients how to deal with their deficits and allow compensation strategies 
(Kwakkel et al., 2003; Stinear et al., 2012). In this way therapy can be personalized and patients 
can be better informed about their recovery. Nowadays, the prediction of functional recovery of the 
upper extremity after stroke is based on clinical scores (Nijland et al., 2010). Patients able to 
perform some finger extension and shoulder abduction on the second day post stroke, have a 
probability of 98% to regain some dexterity. In contrast, patients who were not able to perform 
these movements had a probability of 25% to regain some dexterity (Nijland et al., 2010). Besides 
a sensitivity of 0.89, a specificity of 0.83 and a positive predictive value of 0.93, the Two-way 
contingency table analysis performed in this study showed a negative predictive value (NPV) of 
0.76. As the NPV reflects the part of patients who did not regain some dexterity as predicted, it 
indicates a large number of false negatives (Nijland et al., 2010). Therefore, prediction is not yet 
optimal and can possibly be improved by taking into account neurophysiological parameters. 

Besides functional tests, accurate prediction of outcome may be improved by 
neurophysiological parameters that reflect the amount of brain damage. Recovery of function after 
stroke is largely due to reorganization of activity in (sub)cortical networks (Carter et al., 2012a). A 
fMRI study revealed a temporal relationship between recovery and task-related activation of the 
motor system after stroke (Ward et al., 2003). However, one of the major disadvantages of fMRI is 
the poor temporal resolution. Activity of the brain can also be measured using scalp recorded 
electroencephalography (EEG), which is used as a direct measurement of local field potentials on a 
millisecond time scale. These potentials are mainly generated by the summed postsynaptic electric 
current of multiple neurons at the cortex (Teplan, 2002). In this way neurophysiological changes in 
the brain due to stroke may be reflected in the EEG. Stroke may for example change the absolute 
and relative spectral power of different frequency bands, resulting in an altered spectral power 
distribution. Therefore, EEG-based parameters can reflect neurophysiological changes.  

 
The current study is part of the 4D-EEG project, which consists of a cross-sectional and a 
longitudinal study. In the longitudinal study the EEG of acute stroke patients will be measured 
during the recovery period from the subacute phase to six months post stroke. Measurements will 
take place at week 1, 5, 12 and 26 post stroke. From these EEG recordings, the changes of EEG-
based parameters over time will be investigated and correlated with the amount of recovery of arm 
and hand function. Subsequently, it can be investigated if these parameters may serve as 
predictors of functional recovery of arm and hand function, and whether these EEG-based 
parameters could improve the prediction of functional recovery of the upper extremity. Prior to the 
longitudinal 4D-EEG study, a valid and reliable method should be identified to determine which EEG 
parameters may have a predictive value concerning functional recovery post stroke. These 
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parameters may be identified in the cross-sectional 4D-EEG study. The current study is based on 
part of the cross-sectional data.  
 Previous studies suggest that changes in EEG due to stroke relate to functional impairments. 
Reorganization of (sub)cortical networks is not only visible when networks are active, but also in 
resting-state. For this reason, resting-state activity may relate to behavioral deficits (Carter et al., 
2012a). Two resting-state EEG-based parameters which have been suggested to be related to 
functional recovery in acute stroke patients are the Brain Symmetry Index (BSI) (Van Putten et al., 
2004; Van Putten, 2007; De Vos et al., 2008) and the Delta Alpha Ratio (DAR) (Finnigan et al., 
2007; Claassen et al., 2004).  
 Brain Symmetry Index is defined as a particular asymmetry in spectral power between the two 
cerebral hemispheres (Van Putten et al., 2004). It is assumed to reflect the amount of activity 
imbalance between the hemispheres, which is a common finding in stroke patients (Stojanovic and 
DJurasic, 2013). In this way, the asymmetry caused by stroke leads to higher BSI scores in acute 
stroke patients compared to healthy controls (Van Putten and Tavy, 2004). The BSI has been 
associated with the unilateral paresis of the upper limb, caused by a unilateral lesion in the vicinity 
of the central sulcus of the contralateral hemisphere. Enhanced activity of the penumbra has been 
suggested to be one of the factors that contributes to recovery of upper limb function (Zhang et 
al., 2013). Recovery of the penumbral tissue may result in a decreased asymmetry reflected by a 
decreased BSI. Moreover, BSI scores correlate with the clinical neurological condition of acute 
stroke patients quantified using the National Institutes of Health Stroke Scale (NIHSS) (Van Putten 
and Tavy, 2004). For this reason, the BSI may be an eligible prediction parameter for functional 
recovery in longitudinal rehabilitation studies. However, the development of the Brain Symmetry 
Index during recovery post stroke has not been investigated, as most studies focus on the 
(sub)acute phase. 
 Stroke may also result in changes of the average spectral power in different frequency 
bands. Activity in the alpha frequency band has been assumed to play a key role in optimal 
functioning (Bazanova, 2012). In stroke patients, who suffer impaired control, indeed a decreased 
resting-state alpha power was observed (Finnigan and Van Putten, 2013; Nuwer et al., 1987). 
Besides, Bazanova (2012) showed that alpha power increases from young age until puberty after 
which it is constant until the age of forty when it starts to decrease. In addition, an increased 
spectral power in the delta frequency band is commonly observed in stroke patients during resting-
state (Finnigan et al., 2004;Finnigan and Van Putten, 2013; Nuwer et al., 1987). John and Prichep 
(2006) suggested that this originates in the deep cortical layers and the thalamus, and may be a 
reflection of inhibition of cortical neurons, resulting from dedifferentiation of neural activity. 
Another study found that cortical gray matter lesions alone do not lead to increased delta activity. 
They suggested that this type of lesions destroy the neuronal generators in the cortex (Gloor et al., 
1977). They also found that that lesions of subcortical white matter does lead to increased delta 
activity. Therefore, they suggested that the delta activity could be the result of cortical 
deafferentation and originates from the cortex overlying the lesion (Gloor et al., 1977). These 
suggestions are supported by the finding that delta activity is often increased at the location of the 
primary injury and deafferented regions. Structural damage due to stroke results in increased delta 
activity and decreased alpha activity. The relation between delta and alpha power is referred to as 
the DAR [Delta Alpha Ratio] (Finnigan and Van Putten, 2013; Nuwer et al., 1987). A higher value 
of the DAR has been associated with poor functional recovery, while preserved background alpha 
activity and absence of slow activity was found in patients with good functional recovery (Finnigan 
et al., 2007; Burghaus et al., 2007). Besides, an animal study showed that the DAR was increased 
in rats three hours after stroke onset, but returned to almost normal values in the chronic phase. 
In addition, higher DAR values correlated with decreased motor function of these rats (Zhang et 
al., 2013). Therefore, the DAR may be suitable as a biomarker of functional recovery in longitudinal 
rehabilitation studies. However, in humans the development of the Delta Alpha ratio during 
recovery post stroke has not been investigated. 
 
For both parameters, BSI and DAR, a wavelet-based functional ANOVA (wfANOVA) in which 
resting-state  power spectra are compared could be a complementary method. The BSI is averaged 
over a frequency range from 1 to 25Hz, which will presumably enhance robustness and reliability 
(Van Putten, 2007). However, this also results in loss of information concerning the specific 
frequency bands at which the asymmetry of stroke patients may be increased. Moreover, the BSI 
may also be averaged over frequencies at which the asymmetry did not deviate from healthy 
individuals. This may impede discrimination between stroke patients and healthy individuals. One 
option of improvement is by calculating the BSI for each of the 25 frequencies and investigate at 
which frequencies the BSI differs between stroke patients and healthy individuals. However, this 
will induce the multiple comparisons problem. Another method to investigate asymmetry of brain 
activation is by comparing normalized power spectra between the hemispheres. This method can 
be complementary as it may provide insight into the frequency at which the relative power differs 
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between the hemispheres. However, when comparing power spectra at each separate frequency 
(i.e. comparison in the frequency domain) the power of the outcomes should be corrected for the 
number of comparisons. This will result in a multiple comparisons problem as well. As a power 
spectrum is a fast converging function, it can be expressed in a low number of wavelets. So, if a 
power spectrum is transformed from the frequency to the wavelet domain, the number of 
necessary comparisons will be decreased. Therefore, this will avoid the multiple comparisons 
problem. A method like this has been developed and is called the wfANOVA (McKay et al., 2013). 
The wfANOVA might be complementary to the asymmetry analysis based on the BSI, as it provides 
insight into the frequency at which the relative power differs between the hemispheres. 
 Comparing the power spectra of stroke patients and healthy individuals may also be 
complementary to the DAR. It can provide insight into the anomalies at a wider frequency range 
than just the delta and alpha band. Using the wfANOVA to compare power spectra of stroke 
patients and healthy individuals, it can be investigated at which frequencies the relative spectral 
power is affected by stroke and how this relates to the DAR.  
 
Previous research, in which the EEG data of stroke patients was recorded several times between 3 
weeks and 6 months post stroke, showed that the mean relative delta and theta power were 
increased at the lesioned hemisphere compared to the non-lesioned hemisphere, while the relative 
alpha power was decreased. At the lesioned hemisphere, the relative delta power decreased over 
time, while the relative theta and alpha power increased (Giaquinto et al., 1994).  
 However, it is still unclear how the power spectra of stroke patients differ from healthy 
individuals, and whether they return to normal during the recovery period. 
 
The first aim of the current study was to investigate whether the BSI and DAR differ between 
chronic stroke patients and healthy individuals, which information is lacking in the current 
literature. The second aim was to investigate if a wfANOVA may be complementary to the BSI and 
DAR, and whether it is possible to refine the calculation of these parameters. By applying a 
wfANOVA it could also be investigated at which frequencies the relative spectral power of chronic 
stroke patients differ between the hemispheres, and how their power spectra differ from those of 
healthy individuals. In addition, the influence of age was examined.  

In the acute phase the BSI will be increased due to stroke, where after it will decrease during 
recovery. However, there will always be a part of the brain, which is irreversibly damaged. 
Therefore, it is hypothesized that the BSI of stroke patients in the chronic phase is higher 
compared to that of healthy individuals.  

The power of the delta activity associated with brain damage is assumed to be increased in the 
acute phase post stroke while the power of alpha activity reflecting healthy brain activity is 
hypothesized to be decreased due to stroke. During recovery these values are expected to change 
in the direction of normal values. Therefore, the DAR of chronic stroke patients is hypothesized to 
be slightly higher compared to healthy individuals, depending on the amount of recovery that took 
place.  

The analysis based on wfANOVA complements the current analyses of asymmetry, because it 
may provide insight into the difference in relative spectral power between the hemispheres per 
frequency instead of an asymmetry based on the average over a range of frequencies. It is 
hypothesized that in chronic stroke patients this asymmetry will be present at the delta, theta and 
alpha frequency band. The wfANOVA will also be complementary to the common analysis of the 
DAR, since the comparison of power spectra between chronic stroke patients and healthy 
individuals provides insight into differences of the relative contribution of each frequency band 
instead of just the ratio between the spectral power of the delta and alpha band. 

In this study the influence of age on asymmetry and spectral power was studied by comparing 
the resting-state EEG of young healthy individuals and healthy elderly. To the best of our 
knowledge there is no reason to expect differences in asymmetry due to age. In contrast, the 
spectral power at the alpha frequency band is hypothesized to be lower in elderly compared to 
young individuals, resulting in a higher DAR.  
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2 Methods & Procedures 

2.1 Subjects 
The present study is part of a large cohort EEG study (European Research Council, 4D-EEG 
project). The study has been approved by the Medical Ethical Reviewing Committee of the VU 
University Medical Center Amsterdam (registration number 2014.140). The analyses are based on 
a part of the cross-sectional data as the measurements are not yet finished. Two groups of healthy 
participants without a history of neurologic disorders were recruited. The mean age of these groups 
differed in order to be able to investigate the influence of age. These groups are defined as the 
young-group and elderly-group. Furthermore, four stroke patients were included to compare 
resting-state EEG between chronic stroke patients and healthy controls. The inclusion criteria of 
these patients were: 1) a first-ever ischemic or hemorrhage cerebral stroke; 2) ≥6 months post 
stroke at which no further recovery is expected; 3) functional upper limb impairment in the acute 
phase; 4) ≥18 years of age; 5) mini mental state examination score ≥20 and 6) written informed 
consent. Exclusion criteria were: 1) a pacemaker or other metallic implants; 2) upper extremity 
orthopedic limitations; 3) previous or recurrent stroke. 

2.2 Procedures 
The participants signed a written informed consent after which the EEG measurement started. To 
prevent drowsiness during the resting-state EEG measurement, the measurement was divided in 
five trials of one minute. During the measurement the participant was seated in a wheelchair with 
eyes opened and was asked to focus on a spot just below eye level that was presented on a 
computer screen. Several healthy individuals were measured twice (test-retest design). 
Furthermore, upper limb function of the chronic stroke patients was assessed with the upper limb 
subtest of the Brunnstrom Fugl-Meyer Assessment (FMA) and the Action Research Arm Test 
(ARAT), respectively reflecting the amount of motor function and upper limb capacity as measures 
of functional recovery (Fugl-Meyer et al., 1975; Lyle, 1981).  

2.3 Data acquisition 
Electroencephalography  
The EEG measurements were conducted in a specially equipped van. A high-density 64-channel 
EEG recording was performed using Ag/AgCl electrodes and a 64-channel amplifier (Refa64, TMSi, 
Oldenzaal, the Netherlands). Recordings were performed at a rate of 2048Hz using ASA software 
(ANT software BV, The Netherlands). The ground electrode was placed on the mastoid process. 
During the measurements the data was average referenced. To avoid polarization the electrode 
impedance was kept below 20kΩ.  
 
Clinical tests 
Two valid and reliable clinical tests to measure the upper limb capacity and motor function are 
respectively the Action Research Arm Test (ARAT) and the Fugl-Meyer Assessment (FMA) (Van der 
Lee et al., 2001; Duncan et al., 1983). The FMA is an impairment scale which is specific for stroke 
patients and determines the ability to execute dissociated movements. It is a good predictor of 
upper extremity motor recovery and is most likely to reflect true neurological motor recovery 
(Levin et al., 2009), in the ‘body structure and function’ domain of the International Classification 
of Functioning, Disability and Health (ICF) model. To test the motor function of the upper limb only 
the upper extremity domain of the FMA will be assessed. In this test a maximum score of 66 can 
be achieved, in which a higher score corresponds to better motor function. The ARAT is an arm-
hand test which focuses on manipulating objects and correlates strongly with other measures of 
upper-extremity function (Lang et al., 2013) in the ‘activity’ domain of the ICF model. It consists of 
19 items covering grasp, grip, pinch or gross movements. Each task in the ARAT is scored on a 
four-point ordinal scale (0-3) in which a higher score represents better function, resulting in a 
maximum score of 57.  

2.4 Data analysis 
To investigate whether the DAR and BSI differ between chronic stroke patients and healthy 
individuals, the outcomes of the different groups were compared. These statistical tests were 
performed using IBM SPSS Statistics version 20 (IBM, Armonk, NY, USA). Subsequently, the power 
spectra were compared between hemispheres and between groups by applying the wfANOVA using 
MatLab R2014a (The MathWorks Inc., Natick, United States). Thereafter, outcomes of the BSI and 
DAR were compared to the outcomes of the analyses based on the wfANOVA. In addition, it was 
tested whether age influences the analyses. Furthermore, a new BSI was calculated based on the 
asymmetry at the frequency band at which the spectral power differed significant between the 
hemispheres in accordance to the wfANOVA. In addition, refinement of the DAR was investigated.   
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2.4.1 Preprocessing
EEG data was filtered offline with a 0.5Hz 4th order high pass Butterworth filter using MatLab. Data 
preprocessing was conducted using the FieldTrip toolbox for EEG/MEG-analysis (Oostenveld et al., 
2010). Band-stop filters with ranges of 49-51Hz, 99-101Hz and 149-151Hz were used to reject 
50Hz line-noise. This noise was caused by the necessary connection of the van to the AC power 
during the measurement. The artifact rejection method consisted of the exclusion of eye-blinking 
and eye-movements using independent component analysis (ICA). If necessary, electrode 
recordings were excluded from calculations comparable to ignoring bad channels, where after the 
data was average referenced again. The power of scalp EEG varies between individuals due to 
among others anatomical characteristics. Therefore, it is necessary to normalize the power spectra 
in order to be able to compare them between individuals. This normalization was performed by 
dividing the power by the integral of the power spectrum from 1 to 49Hz, for each channel 
separately.  

2.4.2 BSI calculation  
The BSI is defined as the average of the absolute value of the pair-wise mean difference in spectral 
power between the left (L) and right (R) hemisphere in the frequency range from 1 to 25 Hz 
(Adapted from Van Putten and Tavy, 2004). That is, per channel-pair c one computes 
 

BSIc =
1

25
∑ |

Rc(f)-Lc(f)

Rc(f)+Lc(f)
|

25

f=1
   (1) 

 
which is followed by averaging over all channel pairs. 

 

BSI =
1

𝐶
∑ BSI𝑐

𝐶
𝑐=1     (2) 

 
The upper bound of the BSI is one, reflecting maximal asymmetry for all channel-pairs. The lower 
bound of the BSI is zero, representing perfect symmetry. The BSI of healthy individuals is assumed 
to differ from zero due to activity in the default mode network, which is most active in resting-
state. This network is not equally distributed over the two hemispheres, resulting in lateralisation 
at which no pathology will be expected (Swanson et al. 2011).  

In the present study, power spectral density was determined using the MatLab function 
ft_freqanalysis of the FieldTrip Toolbox using Hanning windows in a multi-tapering approach. The 
artifact-free resting-state EEG data of all electrodes was analyzed, excluding the electrodes of the 
Z-line. In addition, whenever one of the electrodes of a channel-pair was missing, the 
corresponding channel-pair was excluded.  

 
To investigate whether the asymmetry differs between chronic stroke patients and healthy 
individuals, the BSI was calculated for each individual after which it was investigated using a non-
parametric one-way between subjects ANOVA (Kruskal-Wallis Test), followed by a post hoc test 
using Bonferroni corrections. A non-parametric test was applied as the sample sizes of the groups 
were unequal. To be able to examine the influence of age, the healthy individuals were divided in 
two groups; young and older individuals. 

2.4.3 Wavelet based functional ANOVA 
McKay et al. (2013) developed the wfANOVA in order to compare electromyography (EMG), signals 
that vary as a function of time, to overcome the multiple comparisons problem. In the current 
study asymmetry was analyzed by comparing the power spectra between the hemispheres. When 
the power spectra are compared in the frequency domain, an ANOVA should be performed for each 
frequency of the power spectra, where after it is necessary to correct for the large number of 
performed tests. This results in a major decrease of statistical power, which reduces the chance to 
find a significant difference. Power spectra of EEG data very quickly reach an asymptotic form and 
can therefore be described by just a few wavelets.  

In the wfANOVA function the power spectra were first transformed to the wavelet domain 
(Figure 1A). This transformation function uses a discrete-wavelet-transform (dwt.m, Wavelet 
Toolbox Matlab) and 3rd order coiflet-type wavelets (Figure 2). This type of wavelets is nearly-
symmetric. In addition, coiflets have been shown to be excellent when approximating the sampling 
of a smooth function (Wei et al. 1997). This wavelet transformation provides a set of wavelets for 
each of the power spectra. Subsequently, the wavelets describing the power spectra of the left 
hemisphere were compared with those of the right hemisphere using a repeated-measures ANOVA 
followed by pairwise comparisons with Bonferroni correction. Due to the expected reduction of 
necessary comparisons, this can result in a higher statistical power, which increases the chance of 
finding a significant difference. If there is a significantly different wavelet, this wavelet was inverse 
transformed from the wavelet domain to the frequency domain (Figure 1B). Subsequently it was 
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Figure 1 Visualization of the comparison of power spectra using a 
wfANOVA. A. Two datasets of spectral power are transformed from 
the frequency domain to the wavelet domain. Subsequently, these 
wavelets are compared using an ANOVA with Bonferroni correction. 
B. The wavelets that are significantly different between the two 
datasets will be inverse transformed to the frequency domain, to 
visualize the difference between the power spectra. Adapted from 
McKay et al. (2013) Journal of Neurophysiology. 

plotted in order to show at which 
frequency the power spectra differ 
between the left and right hemisphere. 
 
To examine the asymmetry within an 
individual using the wfANOVA, the power 
spectra of the electrodes of the left 
hemisphere were compared to the power 
spectra of the right side, in which the 
electrodes were paired (Appendix A). 
Therefore, the power spectrum of the 
artifact-free EEG data was calculated for 
each channel using the pwelch function of 
MatLab. The window was set on five times 
the sampling frequency, with an overlap of 
50% and a sampling frequency of 2048Hz. 
Subsequently, each power spectrum was 
normalized by dividing it by the sum of its 
spectral power over a range of 1 to 49Hz. 
These normalized power spectra served as 
the input of the repeated-measures 
wfANOVA.  
 
It was first tested whether and at which 
frequency the power spectra of the left 
electrodes were different from those of the 
right electrodes for each of the healthy 
individuals separately. Subsequently, the 
asymmetry of each of the 4 chronic stroke 
patients was investigated the same way. 
This provides information concerning the 
frequency band at which the relative 
contribution to the total power differed 
significantly between the hemispheres. 
Thereafter, the outcomes of the three 
groups were compared to identify 
influences of age and stroke. 
 
To see whether the wfANOVA is 
complementary to the BSI, the outcomes 
of both methods were compared to see 
whether the results were congruent. 
Besides, the BSI was recalculated based on the spectral power of the frequency band at which the 
difference of spectral power between the hemispheres was significant. To investigate whether this 
resulted in augmented discrimination between chronic stroke patients and healthy individuals, this 
recalculated BSI was compared between the groups using a non-parametric one-way ANOVA 
(Kruskal-Wallis Test). 

 
Consistency and reliability of the BSI and asymmetry based on power spectra 
To test whether a method based on wfANOVA is consistent during a measurement, the five resting-
state trials of each subject were analyzed separately after which the outcomes of the consecutive 
trials were compared. The same was done for the BSI, after which per group a Friedman Test was 
applied. A non-parametric test was applied as the sample sizes are very low. If this test reveals 
significant difference, Wilcoxon Signed Rank Tests with Bonferroni correction were performed as 
Post-Hoc tests. 

The reliability of both methods was tested using a test-retest design. Resting-state EEG of six 
healthy subjects was measured at two different days with a time interval between two and seven 
days. Reliability of the BSI was tested using a Wilcoxon signed rank test. Reliability of asymmetry 
based on wfANOVA was evaluated by comparing the outcomes of the test and retest for each 
subject.  

 

Figure 2 Visualisation of the different orders of the coiflet-type 
wavelets. In this study a 3rd order coiflet-type wavelet was used. 
Adapted from Bustillos and Pirela (2013) Revista de la Facultad de 
Ingenieria U.C.V. 
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2.4.4 DAR calculation
The DAR is defined as the ratio of the delta power to the alpha power. For each channel (c) the 
power of the delta frequency band (Dc) was calculated as the sum of the spectral power (Pc (f)) 
over a frequency range from 1 to 4 Hz (3). In the same way the power of the alpha frequency band 
(Ac) was calculated over a frequency range from 8 to 12 Hz (4) for each separate channel. 
 

Dc = ∑ P𝑐 (𝑓)
4

𝑓=1
     (3) 

 
Ac = ∑ P𝑐 (𝑓)

12

𝑓=8
     (4) 

 
Subsequently one computes the delta alpha ratio of each separate channel as 
 

DAR𝑐 = Dc Ac⁄      (5) 
 
after which the DARc of all channels n were averaged resulting in a global DAR. 

 
DAR =

1

𝑛
∑ DAR𝑐

𝑛
𝑐=1      (6) 

 
To investigate whether it is possible to discriminate chronic stroke patients from healthy individuals 
based on their DAR and to investigate the influence of age, the DAR was calculated for each 
individual. Subsequently, since the sample size of the groups were unequal a non-parametric one-
way between subjects ANOVA (Kruskal-Wallis Test) was applied, to compare the DAR between the 
different groups. If a difference was found, this test was followed by a post hoc analysis with 
Bonferroni corrections.  

2.4.5 Spectral power deviations in chronic stroke patients 
Power spectra were compared between chronic stroke patients and young and older healthy 
individuals using a wfANOVA. This provides information concerning the differences of relative 
contribution of different frequency bands between the groups. The power spectra were calculated 
as described before. However, the normalized power spectra of all channels were averaged in order 
to obtain one power spectrum per individual. These power spectra served as the input of a one-
way between subjects wfANOVA (Appendix A).  
 
To evaluate the complementary capacity of wfANOVA to the more common analysis of brain 
damage expressed by the DAR, the outcomes of the two analyses were compared. In addition, 
based on the results of the previous described analyses it was tried to find a method to refine the 
DAR. 
 
Consistency and reliability of the DAR and power spectra 
To determine whether the DAR and a one-way between subjects wfANOVA are consistent during a 
measurement, the analyses were done on each of the trials separately for each of the subjects. 
Subsequently, the outcomes of the consecutive trials were compared. For the DAR this was done 
using a Friedman Test for each group separately. If this test reveals significant difference, Wilcoxon 
Signed Rank Tests with Bonferroni correction were performed as Post-Hoc tests. To evaluate the 
consistency of a power spectrum within a measurement, per group the power spectra of the 
consecutive trials were compared using a repeated-measures wfANOVA.  

To test the reliability of the DAR and power spectra, the outcomes of the test and retest of 6 
healthy subjects were compared. For the DAR this was tested using a Wilcoxon signed rank test. 
The reliability of the power spectra was evaluated using a repeated-measures wfANOVA. 
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3 Results 

Five minutes of artifact free resting-state EEG was analyzed for 8 young healthy individuals, 4 older 
healthy individuals and 4 chronic stroke patients. Clinical information of the participants can be 
found in Table 1. 
 
Table 1 Clinical information of the participating chronic stroke patients. 
Subject Age(SD) Affected  hemisphere 

(L/R) 
ARAT-score 

(0-57) 
FMA-score 

(0-66) 
Time post 

stroke 
Young 24.0 (±2.4) - - - - 
Elderly 57.8(±12.7) - - - - 
Patients 67.5 (±6.5) - - - - 
P1 64 R 5 13 7 years 
P2 63 L 54 39 4 years 
P3 77 R 51 62 8 months 
P4 66 L 3 9 18 years 
P = patient, L = left hemisphere, R = right hemisphere, ARAT = Action Research Arm Test, FMA = Brunnstrom Fugl Meyer 
Assessment (upper limb subtest). 
 
BSI 
The BSI was calculated for each of the young healthy 
individuals, healthy elderly and chronic stroke 
patients (Table 2). A Kruskal-Wallis Test indicated a 
significant difference between the groups (2(2) = 
8.487, p=0.014). A Bonferroni post hoc test showed 
that the asymmetry calculated as the BSI did not 
differ significantly between healthy young individuals 
(Mdn=0.11, IQR=0.03) and healthy elderly 
(Mdn=0.11, IQR=0.004). However, the BSI was 
significantly increased in chronic stroke patients 
(Mdn=0.21, IQR=0.02, p<0.001) compared to both 
young and old healthy individuals (Figure 3). 

In addition, asymmetry was investigated using a 
method in which the power spectra of the 
hemispheres were compared using a repeated-
measures wfANOVA in which the electrodes were 
paired. Figure 4A shows an example of the power 
spectra of a young subject which was representative 
for all healthy individuals. The power spectra of the 
left electrodes do not seem to differ from the power 
spectra of the right electrodes. This was supported by 
the wfANOVA. The wavelets that describe the power 
spectra of the left electrodes did differ from those 
describing the power spectra of the right electrodes. 
However, these differences were small and only present at a few individual frequencies instead of a 
larger part of a frequency band. The contrast line in Figure 4B reflects the wavelets which were 
significantly different between the left and right hemisphere. Moreover, when the outcomes of all 
healthy subjects were compared there was no frequency at which the difference was present for 
each of the healthy individuals (Appendix B, Figure B1).  

 N BSImedian (IQR) BSIα(IQR) BSIθ(IQR) 
Young 8 0.11 (0.03) 0.09 (0.03) 0.07 (0.02) 
Elderly 4 0.11(0.004) 0.11 (0.01) 0.12 (0.04) 
Patients 4 0.21 (0.02) 0.18 (0.04) 0.25 (0.07) 

P1  0.20 0.15 0.32 
P2  0.24 0.19 0.11 
P3  0.19 0.24 0.24 
P4  0.21 0.18 0.26 

 Table 2 Global BSI, BSIα and BSIθ values of each group and of each individual stroke patient. 

N = number of individuals per group, P = patient, BSI = global Brain Symmetry Index (1-25Hz), IQR = interquartile 
range. BSIα = BSI of the alpha frequency band (8-12Hz), BSIθ  = BSI of the theta frequency band (4-8Hz)  
 

Figure 3 The Brain Symmetry Index of the three 
groups. A significant difference was found (2(2) = 
8.487, p = 0.014). Post hoc tests with a Bonferroni 
correction showed that the BSI does not differ 
between young healthy individuals and healthy 
elderly. The BSI of chronic stroke patients is 
significantly higher compared to both control groups. 
*p < 0.001 
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In contrast, in all four chronic stroke patients one or more differences were found between the 
power spectra of the left and right electrodes which covers at least one third of a frequency band. 
All patients showed a significant difference in their power spectra at the alpha frequency band (8-
12Hz) (Figure 5). Moreover, in three out of four patients (P1, P2 and P4) the relative amount of 
alpha activity was decreased at the lesioned hemisphere. For this reason, the BSI was recalculated 
based on just the alpha band (Table 2). A Kruskal-Wallis Test indicated a significant difference in 
BSIα between the groups (2(2) = 7.428, p=0.024). A post hoc test showed that the BSIα of 
patients was significantly larger than young healthy individuals (p<0.01) and healthy elderly 
(p<0.05). Besides, all patients showed an asymmetry in their power spectra at the theta frequency 
band (4-8Hz). Therefore, a BSI based on the theta band was calculated (Table 2). A Kruskal-Wallis 
Test indicated a significant difference between the groups (2(2) = 9.448, p=0.009). A post hoc 
test showed that the BSIθ of patients was significantly larger than the BSIθ of young healthy 
individuals (p<0.001) and healthy elderly (p<0.01). 
 

Figure 4 A. An example of the mean normalized power spectra of the electrodes above the left and right hemisphere of one of 
the healthy young individuals. These power spectra do not seem to differ between hemispheres. B. The corresponding contrast 
reflects the differences between the power spectra which were significant. 

A.                                                                        B. 

 δ    θ   α    β 

Figure 5 Comparison of the power spectra of the electrodes above the left and right hemisphere of four chronic stroke 
patients (P1-4) using a wfANOVA. Contrast reflects the differences between the power spectra which were significant. 
Positive values reflect higher relative power at the right hemisphere. Vertical lines separate the frequency bands. 

P1 

P4 P3 

P2 

 δ    θ   α    β 
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Consistency of the BSI and the wfANOVA method within a measurement was tested by comparing 
the five trials. Friedman Tests indicated that the BSI did not differ between the trials within a 
measurement in each of the groups (young: 2(4)=4.667, p=0.32; elderly: 2(4)=4.600, p=0.33; 
patients: 2(4)=6.600, p=0.16)(Figure B2). Also the asymmetry based on wfANOVA did not differ 
between the trials. 

The reliability between measurements was investigated by a test-retest design using the 
Wilcoxon signed rank test. The BSI did not differ between the test and retest (Z=-.105, p=0.917) 
(Figure B3). Also the asymmetry analysed using a wfANOVA did not differ between the 
measurements. 
   
DAR 
The results concerning the DAR are shown in Table 3. A Kruskal-Wallis Test revealed that there 
were no statistically significant differences between groups, 2(2)=3.429, p=0.180 (Figure 6).  
 
Next, the power spectra of the young group were compared to those of the older individuals using 
a one-way between subjects wfANOVA. Although the power spectra do seem to differ between the 
groups (Figure 7), the wfANOVA showed that the power spectra of the chronic stroke patients are 
not significantly different from the power spectra of healthy individuals (P>0.05).  

As the asymmetry analysis revealed that in all stroke patients of the current study the power 
spectra differed between the hemispheres especially at the alpha frequency band (Figure 6), the 
DAR will differ between the hemispheres. Therefore, the DAR was calculated for the lesioned and 
non-lesioned hemisphere separately (Table 3). Results show that in three out of four chronic stroke 
patients the DAR of the lesioned hemisphere is higher compared to their non-lesioned hemisphere. 
P3 showed an increased relative alpha power in the lesioned hemisphere, which corresponds to a 
lower DAR at the lesioned side. A Kruskal-Wallis Test was applied to compare the DARlesioned of the 
chronic stroke patients with the DAR of the healthy individuals. This test showed that there was no 
statistically significant difference between the groups, 2(2)=3.877, p=0.144. 

 
 

 N DARmedian (IQR) DARlesioned(IQR) DARnon-lesioned(IQR) 
Young 8 0.80 (0.46) - - 
Elderly 4 1.29 (0.64) - - 
Patients 4 1.65 (0.38) 1.53 (0.73) 1.30 (0.42) 

P1  1.72 2.15 1.34 
P2  1.57 1.78 1.26 
P3  1.76 1.28 2.01 
P4  0.66 0.74 0.58 

Table 3 DAR values of each group and of each individual stroke patient distinguishing lesioned and non-lesioned 
hemispheres. 

N = number of individuals per group, P = patient, DAR = Delta Alpha Ratio, IQR = interquartile range.  

Figure 6 Delta Alpha Ratio of the healthy young 
individuals, healthy elderly and chronic stroke patients. 
2(2) = 3.429, p = 0.180.  

Figure 7 Normalized power spectra of the different groups. 
The wfANOVA showed that there were no significant 
differences. 

 δ   θ    α    β 
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Consistency of the DAR and the wfANOVA method within a measurement was tested by comparing 
the five trials of each subject. Friedman Tests indicated that the DAR did not differ between the 
trials within a measurement in the group of healthy young individuals and chronic stroke patients 
(young: 2(4)=3.597, p = 0.46; patients: 2(4)=3.400, p=0.49)(Figure B4), while a significant 
difference was found in the older healthy group (2(4)=4.600, p=0.33). However, Wilcoxon 
Signed-Rank Tests indicated that the DAR did not seem to differ between the consecutive trials or 
between the first and last trial. A repeated-measures wfANOVA revealed that the power spectra are 
not different between the trials.  

The reliability between measurements was investigated using a test-retest design. A Wilcoxon 
Signed-Ranks Test showed that the DAR is not different between the test and retest (Z=-.734, 
p=0.463) (Figure B5). Besides, repeated-measures wfANOVA indicated that the power spectra did 
not differ significantly between the test and retest measurements.  

4 Discussion 

The prediction of functional recovery of the upper extremity after stroke and plasticity of the brain 
are of major interest for stroke survivors and caregivers. The current study was study of the 4D-
EEG project, which consists of a cross-sectional and a longitudinal study. The main goal of the 4D-
EEG project is to find parameters that improve prediction of functional recovery of the upper 
extremity. Prior to the longitudinal study of the 4D-EEG project, the cross-sectional data will be 
evaluated in order to find valid and reliable EEG parameters which may have a predictive value 
concerning functional recovery post stroke. 

The analyses performed in the current study are based on part of the data set of the cross-
sectional 4D-EEG study, as the measurements are not yet finished. Therefore, current results may 
be interpreted as a preliminary study. Nevertheless, it gave insight in the differences between 
chronic stroke patients and healthy individuals concerning the BSI and DAR, as well as the 
complementary capacity of the wfANOVA to these two parameters. 
 
The first aim of the current study was to investigate whether the BSI and DAR differed between 
healthy individuals and chronic stoke patients.   
 
BSI 
As hypothesized, it is possible to discriminate chronic stroke patients from healthy individuals 
based on their BSI. To the best of the authors’ knowledge this was not studied before. Since no 
differences were found between the BSI of young and older healthy individuals, it can be concluded 
that, at least in these groups of subjects, age does not influence asymmetry reflected by the BSI. 

The BSI of healthy individuals has been investigated before by Van Putten and Tavy (2004), 
who reported an average value of 0.042(±0.005). This value is lower compared to the BSI of 
healthy individuals calculated in the current study (0.11(±0.02)). This discrepancy may possibly be 
caused by the different methods of data acquisition. Van Putten and Tavy measured EEG using a 
bipolar 8 channel subset (F4-C4, F3-C3, C4-P4, C3-P3, P4-O2, P3-O1, F4-T4 and F3-T3) resulting 
in only four channel pairs between the hemispheres, while in the current study a ground electrode 
was used and the BSI was calculated over 26 electrode pairs. Nevertheless, the present study 
showed a significant difference between healthy individuals and chronic stroke patients. This 
asymmetry may possibly be caused by for example irreversibly damaged brain tissue or increased 
activity of the contralateral hemisphere. Van Putten and Tavy (2004) investigated the BSI of stroke 
patients in the acute phase post stroke in comparison to healthy individuals. They concluded that it 
is possible to discriminate stroke patients from healthy individuals based on their BSI (Van Putten 
and Tavy, 2004). However, the current study is the first which shows that this is still possible in the 
chronic phase post stroke.  

A range of BSI norm values at which no pathology may be expected is still lacking in the 
literature. A healthy BSI range may be estimated based on the mean BSI of the healthy individuals 
participating in this study plus two times the standard deviation. This results in a range from 0 (full 
symmetry) to 0.15 at which asymmetry is present while no pathology is expected. This boundary 
was supported by the data of the current study, as none of the healthy individuals and all chronic 
stroke patients showed a BSI above this value.  
 
DAR 
In contrast to the hypothesis, in the present group of subjects it was not possible to discriminate 
chronic stroke patients from healthy individuals based on the calculated DAR. The DAR of young 
healthy individuals did not significantly differ from the DAR of healthy elderly. Therefore, it was 
concluded that age most likely does not influence the DAR.  
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The DAR of healthy individuals as calculated in this study appears to be slightly lower 
compared to findings of Finnigan et al. (2007) who calculated a mean DAR of 1.58(±0.93) based 
on EEG data of six healthy elderly, while we found a median value of 1.29(±0.64). Based on their 
sample size, mean value and standard deviation, the confidence interval was calculated to be CI95 
= [0.84;2.32]. The DAR in the present study falls within this range, which indicates that it does not 
deviate from the finding of Finnigan et al. (2007). Nonetheless, there is a large discrepancy 
between the calculated DAR of stroke patients in the current study (1.65(±0.38)) and the value 
calculated by Finnigan et al. (2007), who calculated a DAR of 5.63(±3.74). This discrepancy may 
be explained  by the fact that the stroke patients measured in the current study were in the chronic 
phase (≥6 months post stroke), while the stroke patients who participated in the study of Finnigan 
et al. (2007) were still in the sub-acute phase (48-52h post stroke). Therefore, it is not possible to 
compare the DAR values of these two studies.  

Furthermore, Finnigan and Van Putten (2013) stated that it may be appropriate to consider a 
value of one or less to be relatively normal, while values higher than two may be considered 
abnormal. However, the CI95 of healthy individuals calculated based on the data of Finnigan et al. 
(2007) goes beyond this border. None of the healthy elderly who participated in the current study 
showed a DAR below one, while one individual even transcended the border of abnormality. In 
addition, one of the chronic stroke patients showed a DAR below one, while none of the patients 
exceeded a value of two. This also emphasizes the amount of natural variation among chronic 
patients. We therefore propose to redefine the borders in future research, which will discriminate 
healthy individuals and chronic stroke patients.  

The fact that the current study could not discriminate chronic stroke patients from healthy 
individuals may also be due to the low number of individuals. Figure 6 shows a trend towards 
significant differences between these three groups. An increased sample size may have resulted in 
a significant difference. The number of individuals required to attain a significant difference was 
calculated as n = (zs/e)2. In which z = 1.96 for a 95% confidence interval, s = 0.5 as the standard 
deviation and the desired margin of error e was set on 0.20, resulting in a sample size of 25. If all 
data of the cross-sectional 4D-EEG study is available, the data should be reanalysed in order to be 
draw conclusions on this parameter.  
 
wfANOVA  
The second aim of this study was to investigate whether a method in which the wavelet based 
functional ANOVA was used could be complementary to the BSI and DAR. 
  
In order to analyze the asymmetry, the normalized power spectra of the left and right hemisphere 
were compared using a repeated-measures wfANOVA. The asymmetry analysis showed that the 
normalized power spectra of the healthy individuals was not different between the hemispheres, as 
the differences were small and present at only small parts of the frequency bands (Figure B6), 
except for one individual. Since the outcomes of young and older healthy individuals did not differ, 
as was hypothesized, it can be concluded that age does not influence asymmetry. In contrast, the 
normalized power spectra of the chronic stroke patients did differ between the hemispheres. The 
finding that in all chronic stroke patients an asymmetry was present at the alpha and theta band is 
in accordance with the hypothesis. However, asymmetry was also hypothesized to be present in 
the delta frequency band, which was not found in the present study.  

The asymmetry at the alpha and theta band showed to be a consistent finding across the 
chronic stroke patients. All four chronic stroke patients showed a significant difference between the 
hemispheres at least at one-third of these frequency bands. In three out of four patients (P1, P2 
and P4) the relative alpha activity was decreased at the lesioned hemisphere compared to the non-
lesioned hemisphere. In three patients (P1, P3 and P4) the relative theta activity was increased at 
the lesioned hemisphere. These findings are in accordance to the results of Giaquinto et al. (1994), 
who showed that in stroke patients relative alpha and theta power were respectively lower and 
higher at the lesioned hemisphere compared to the non-lesioned hemisphere, in both acute and 
chronic phase.  

The BSI and the analysis based on wfANOVA, showed an asymmetry in chronic stroke patients 
while there was no asymmetry observed in healthy individuals. Therefore they are concluded to be 
congruent. Moreover, the wfANOVA provides insight into the difference in relative spectral power 
between the hemispheres per frequency. Thereby, it provided insight into opportunities to augment 
discrimination between chronic stroke patients and healthy individuals concerning the BSI.  

Based on the finding that in stroke patients the relative spectral power differed between the 
hemispheres at the alpha and theta frequency band, the BSI was recalculated based on these 
separate frequency bands. As can be seen in Figure B6, the BSIα does not seem to improve the 
discrimination between healthy individuals and chronic stroke patients, while a BSIθ is more likely 
to augment this discrimination. For both the chronic stroke patients and healthy individuals the 
BSIα was slightly lower compared to the regular BSI (Table 2), and indeed did not improve the 
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discrimination. This finding is in contrast to the results of Juhasz et al. (1997), who showed lower 
absolute alpha power in the lesioned hemisphere in the acute phase post stroke in 52% of the 
patients. However, as the patients in the current study are chronic patients, this discrepancy may 
be due to changes during the recovery phase. In contrast, in chronic stroke patients the BSIθ is 
higher compared to the regular BSI, while in healthy individuals the BSIθ is lower compared to the 
BSI (Table 2). As it was shown that the BSIθ increased the possibility of discrimination between 
healthy individuals and chronic stroke patients, the BSIθ is an important refinement of the regular 
BSI. Therefore, the author suggests that an analysis based on the wfANOVA is complementary to 
the BSI. 

 
The discrepancy between the BSIα and the asymmetry at the alpha frequency band as shown by 
the wfANOVA, suggests a difference between the two ways of calculating asymmetry. This may be 
due to using normalized power spectra as input of the wfANOVA, while in the calculation of the BSI 
the absolute spectral power was used, which was not obtained from normalized power spectra. The 
reason for normalization is to overcome the influence of anatomical characteristics. Using the 
wfANOVA, standardization is necessary in order to be able to compare power spectra. However, if 
the overall brain activity of one of the hemispheres is higher, it may lead to an upward shift of 
power spectra, which will result in an increased BSI value. This difference in amount of brain 
activity will not be detected using the wfANOVA in which power spectra were normalized. 
Therefore, the different calculations may result in different outcomes concerning the asymmetry of 
the same individual. Though, the wfANOVA method is still meaningful as it provides insight into the 
differences between the hemispheres concerning the relative amount of activity at different 
frequency bands. Even though this study included only four chronic stroke patients, it can be 
concluded that the wfANOVA is complementary to the BSI. When the EEG of a larger number of 
chronic stroke patients is measured, these analyses should be repeated to be able to confirm the 
preliminary outcomes.  
  
In addition, the wfANOVA was used to compare power spectra of chronic stroke patients and 
healthy individuals. The wfANOVA showed that, at least in these groups of subjects, the power 
spectra of chronic stroke patients did not differ from young and older healthy individuals. 
Furthermore, age did not seem to influence the power spectra.   

It should be noted that besides the DAR also the wfANOVA method shows a trend towards a 
group difference (Figure 8). Compared to healthy elderly, chronic stroke patients seem to have an 
increased relative spectral power in the delta and theta frequency band and a decreased relative 
spectral power in the alpha frequency band. To the best of the authors’ knowledge differences of 
spectral power over a frequency range from 1 to 49 Hz between stroke patients and healthy 
individuals have not been investigated before. Besides, a trend concerning an age related 
difference was shown. The relative spectral power in the alpha band seems to be decreased in the 
older healthy individuals compared to the young group as hypothesized. This is in accordance with 
Bazanova (2012) who showed that alpha power increases until puberty after which it is constant 
until the age of forty when it starts to decrease. This would underline the importance of an age-
matched control group in a cross-sectional study in which EEG data is compared between groups. 
Moreover, also the wavelets which describe the power spectra show the trend of differences 
between the groups (Figure 9).  

The findings of the wfANOVA method are in accordance with the outcomes of the DAR analysis 
and show similar trends. wfANOVA is suggested to be complementary to the DAR as the analysis 
based on wfANOVA provides insight into the differences between the groups concerning the relative 
contribution of each frequency to the total power, instead of just the ratio between delta and alpha 
power. 

The asymmetry analysis based on the wfANOVA showed that the power spectra of stroke 
patients differed between the hemispheres especially at the alpha and theta frequency band 
(Figure 6). This is in accordance to a previous study, which showed that the relative alpha power 
was higher at the non-lesioned hemisphere (Giaquinto et al., 1997). This could result in a higher 
DAR at the lesioned hemisphere compared to the non-lesioned hemisphere, which could augment 
the discrimination of stroke patients and healthy individuals. Therefore, the DAR was also 
calculated per hemisphere. The DARlesioned did not result in a significant difference between the 
groups. Nonetheless, the mean value of the DARlesioned is higher compared to the regular DAR. This 
resulted in a decreased p-value, which increases the chance of discrimination between healthy 
individuals and chronic stroke patients in larger populations. Therefore, a DAR based on just the 
lesioned hemisphere may be a refinement. However, this should be confirmed by investigating a 
larger patient population.  
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For each of the investigated parameters no differences were found between the outcomes of the 
consecutive trials, the first and last trial or between the test and retest measurement. Therefore, it 
can be concluded that all investigated methods are robust and consistent within and between 
measurements. 

Limitations  
The major limitation of the current study is the low number of subjects, especially in the chronic 
stroke patients group and the age-matched healthy control group. Therefore, the data will be 
reanalysed when all data of the cross-sectional study of the 4D-EEG project is available. 

Besides, the resting-state data of the current study contained artefacts, which subsequently 
were removed during pre-processing. Artefacts as eye blinks and line noise were removed by 
respectively applying ICA and using band-stop filters. Although these filters are commonly used in 
EEG pre-processing, filters will affect the data and therefore may be considered as a limitation. 
However, artefacts caused by fascial muscle contractions or unexplained causes could only be 
removed from the data by removing a part of a trial. This resulted in less data than the total of five 
minutes as recorded. In the current study, it was attempt to avoid these artefacts by providing the 
participants clear instructions.  
 
In addition, there are some limitations for the used calculation methods.  
 
BSI 
A limitation of the BSI is that some stroke patients may show similar impairments measured with 
the electrodes covering homologous regions of both hemispheres, while there was actually only 
damage in one of the hemispheres. This can be due to remote effects of a lesion. For example, 
higher power in the delta frequency range in all frontal electrodes. This may result in a ‘better’ BSI 
compared to patients having unilateral and hence less severe damage (Leon-Carrion et al. 2009).  

Figure 8 A. Power spectra of the different groups. ‘Contrasts’ showed that there is no significant difference of the 
wavelets between  the groups. B. Mean power spectrum of each individual separately. Both figures show a trend 
toward significant differences between power spectra. 

A B 

Figure 9 Wavelets of each group, in which the x-axis reflects the wavelet number while the y-axis is a reflection of 
the contribution of that wavelet to the waveform (power spectrum). No significant differences were found between 
the wavelets of different groups. However, this figure shows that there may be trends. 
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DAR
A limitation of the DAR is that even in healthy individuals the DAR will not be equal at every part of 
the brain. This is caused by the fact that different brain regions show different dominant 
frequencies (Fingelkurts and Fingelkurts, 2010). If a channel was determined to be a ‘bad channel’ 
due to noise, it was removed from the analysis. However, depending on the amount and location of 
these channels, this may influence the outcome. 
 
wfANOVA 
To be able to compare power spectra between subjects, normalization is required. Structural 
differences as brain tissue and thickness of the skull between individuals and even between 
electrode locations may influence the measured power at the electrodes. In addition, although it 
was tried to keep the impedances low and equal, the impedances differed between electrodes, 
which may have influenced the measured local field potentials. For these reasons, the power 
spectra had to be normalized before they could be compared between individuals or between 
electrodes. However, not only structural variables influence the amplitude. A larger number of 
neurons oscillating at the same frequency, also leads to a higher amplitude measured at an 
electrode. Therefore, a difference in power could also indicate differences in neurophysiological 
activity, which is valuable information. However, a part of this information is lost due to 
normalization. As stated before, if the power is increased over the full range of the spectrum, this 
will lead to an increased BSI value, while comparing the power spectra after normalization will not 
show a difference at any frequency. However, if the power is increased at a specific frequency 
band, this may not be shown in the BSI. For this reason, the interpretation of asymmetry based on 
normalized power spectra may be different from the asymmetry calculated as the BSI. 
 
Explanations concerning methodological considerations and choices made in the current study can 
be found in Appendix C. 
 
Future research  
The majority of studies in the field of recovery post stroke have been focusing on EEG in the 
(sub)acute phase (Finnigan and Van Putten, 2013). Therefore, the current literature lacks 
information concerning changes in EEG during the recovery period post stroke. In the longitudinal 
study of the 4D-EEG project, the EEG of stroke patients will be measured during the recovery 
period from the subacute phase to six months post stroke. Measurements will take place at week 
1, 5, 12 and 26 post stroke. As brains are very plastic it will be of major importance to start 
measuring as early after stroke onset as possible. Neural plasticity, defined as the capability of the 
brain to alter function or structure in response to an event, is a crucial component of functional 
recovery after stroke (Pearson-Fuhrhop and Cramer, 2010). As neuro plasticity is reflected by 
changes, the availability of EEG data which includes both the acute and chronic phase is of major 
importance. Therefore, the current results could not provide information concerning 
neurophysiological changes. From this longitudinal data, the development of EEG-based 
parameters during the recovery period can be evaluated. This could provide insight into the 
neurophysiological recovery post stroke, as well as the relation between neurophysiological and 
functional recovery. Moreover, this data could be used to evaluate the capacity of the EEG-
parameters to predict recovery of the upper extremity.  
 
The asymmetry is suggested to be investigated in the longitudinal 4D-EEG study. A previous study 
showed a strong correlation between the BSI and clinical neurological condition quantified using the 
NIHSS in the acute phase post stroke (Van Putten and Tavy, 2004). In addition, it was shown that 
if a patient showed poor recovery the BSI increased (i.e. asymmetry increased) between one and 
three months post stroke. If a patient showed good recovery a decreased BSI was measured 
(Stojavic and Djurasic, 2013).  
 A study concerning the relative spectral power did also show changes over time. The relative 
delta and theta power respectively decreases and increases at the lesioned hemisphere during 
recovery, while it remained more or less constant at the non-lesioned hemisphere (Giaquinto et al., 
1994). This may influence the asymmetry as measured using the wfANOVA. 
 Based on these previous studies, it is hypothesized that functional recovery of the upper limb 
will be accompanied by a decrease of asymmetry in brain activity reflected by a decreased BSI. 
Moreover, it is interesting to investigate at which frequency band the asymmetry changes during 
recovery using the wfANOVA. In addition, it is suggested to investigate whether the BSI may be 
used as a prediction parameter of functional recovery in longitudinal rehabilitation studies. 
 
The DAR may also be an interesting parameter to investigate longitudinally. An animal study 
showed that the Alpha-to-Delta ratio (ADR, inverse DAR) was reduced in the acute phase in the 
penumbra of rats with experimentally induced stroke and gradually recovered to almost the same 
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ADR as before stroke onset in the chronic phase. This change in ADR correlated with recovery of 
motor function (Zhang et al., 2013). In addition, also the discrepancy in DAR values of chronic 
stroke patients of the present study and the subacute patients in the study of Finnigan et al. 
(2007) indicate the possibility that the DAR changes towards a normal value during recovery.  

As the delta power at the lesioned hemisphere decreased during the recovery period, while the 
alpha power increased (Giaquinto et al., 1994), the DARlesioned is hypothesized to decrease over 
time. Giaquinto et al. (1994) did also show an increase of the relative theta power at the lesioned 
hemisphere.  

However, in humans the development of the DAR over time from subacute to the chronic 
phase has not been studied before. The author suggests to investigate the spectral power at more 
frequency bands using the wfANOVA in a larger population. This will provide the possibility to 
investigate whether there are other ratio’s that could reflect neural deficits. To the best of the 
authors’ knowledge, the study of Giaquinto et al. (1994) is the only study which investigated 
spectral power over time post stroke. The 4D-EEG project may confirm those results and will make 
it possible to correlate these changes with recovery status. A comparison between data of stroke 
patients and healthy individuals is still lacking. Furthermore, it is suggested to investigate whether 
the DAR and relative spectral power per frequency band may be used as a prediction parameter. 
This may all be investigated in the longitudinal study of the 4D-EEG project. Besides, the author 
proposes to distinguish between the lesioned and non-lesioned hemisphere in these analyses. 
 
In the current study, in which only four chronic stroke patients were included, it was not possible to 
correlate the BSI or DAR with the upper limb capacity and motor function reflected by respectively 
the ARAT and FMA scores. However, the two EEG-parameters that augment the discrimination 
between chronic stroke patients and healthy individuals (BSIθ and DARlesioned) do seem to show a 
trend towards a negative correlation (Figure B8, Figure B9). A higher BSI or DAR reflects more 
brain damage, resulting in lower scores at the clinical tests. However, for the DARlesioned this trend 
is only visible if P4 was considered to be an outlier (Figure B9b). The DARlesioned of this patient was 
0.74, which is even lower than the lowest healthy individual. Based on the low number of patients, 
it was not possible to confirm the suggested association between the EEG-parameters and 
functional recovery. Therefore, it is suggested to reanalyse the data if all data of the cross-
sectional study is available. However, these trends are promising for the longitudinal 4D-EEG 
study. It emphasizes the possible eligibility of these parameters as a predictor of functional 
recovery of the upper extremity.  
 
Furthermore, a parameter that has not been investigated in the current study, but has been 
suggested to be changed due to stroke, is the alpha peak frequency (APF) (Giaquinto et al., 1994; 
Juhasz et al., 1997). The APF has been defined as the mean weighted frequency of the alpha band 
(Giaquinto et al., 1994). It has been shown that the APF is lower at the lesioned hemisphere 
compared to the non-lesioned hemisphere (Giaquinto et al., 1994). At the lesioned hemisphere it 
increases over time from the acute phase to 2-4 weeks post stroke (Juhasz et al., 1997). Whether 
this increase is parallel to clinical improvement is still unknown. Therefore, the author suggests to 
investigate the development of this parameter over time in relation to fucntional recovery. 
Furthermore it may be investigated whether the APF can contribute to prediction of functional 
recovery of the upper extremity post stroke. 
 Another promising line of research which unfortunately cannot be investigated in the 4D-EEG 
project, is the change in EEG within the acute phase post stroke. Finnigan et al. (2004) conducted 
an EEG measurement within sixteen hours after stroke onset followed by a second measurement 
within approximately eight hours after the first measurement. It was shown that a measure of the 
rate of change of average scalp delta power (acute delta change index) correlates with the 30-day 
NIHSS scores. Therefore, it would be of interest to investigate how EEG parameters change within 
the acute phase post stroke and whether this can predict functional recovery of the upper limb 
reflected by the FMA and ARAT. 

5 Conclusions 

It is possible to discriminate chronic stroke patients from healthy individuals based on the BSI, but 
not based on the DAR. However, trends toward significant differences were found for the DAR. 

Conducting a wfANOVA method in order to analyze asymmetry by comparing the power 
spectra of the left and right hemisphere is complementary to the BSI as it provides insight into the 
difference in relative spectral power between the hemispheres. This study showed that in all four 
chronic stroke patients a difference can be found at the alpha and theta frequency band. A BSI 
based on just the theta frequency band improves discrimination of chronic stroke patients from 
healthy individuals, in contrast to a BSI based on just the alpha frequency band. In addition, this 
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study showed that separating the DAR calculation of the lesioned and non-lesioned hemisphere 
may improve discrimination between healthy individuals and chronic stroke patients. 

Using a wfANOVA method to investigate the differences in power spectra between groups is 
complementary to the DAR as it provides insight into the differences between power spectra of 
individuals at a range wider than just the delta or alpha frequency band. Although these differences 
were not significant, trends were shown. The trends concerning the differences of the DAR and 
power spectra between groups should be investigated when more data is available. 

Besides, it is concluded that age does not influence the BSI, DAR or the power spectra. 
However, trends were found for the DAR and relative spectral power. In addition, it is concluded 
that the calculations conducted in this study are robust and consistent within and between 
measurements.  

A promising line of future research is the longitudinal analysis of EEG in stroke patients (4D-
EEG project). This will give insight into the development of EEG-based parameters as the BSI, DAR 
and spectral power over time from the acute to the chronic phase post stroke. This information is 
still lacking in the literature. In addition, the relation between these parameters and functional 
recovery of the upper extremity should be investigated. This could provide insight concerning the 
relationship between neurophysiological changes and functional recovery. Moreover, it should be 
investigated whether these EEG-based parameters can improve prediction of functional recovery. 
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Appendix A 

Wavelet based functional ANOVA 
This analysis method was developed by McKay et al. (2013). Their original files can be found at the institutional 
website of the authors: https://neurolab.gatech.edu/wp/wp-content/uploads/2012/08/wfANOVAdemo.zip. 
To use it as a repeated-measures wfANOVA with pairwise comparisons the MatLab script should look like: 

 
data   = [p_norm_left; p_norm_right]; % or: [p_norm_test; p_norm_retest] 
n_channels = 26; % amount of channel pairs, or subjects in case of a repeated-measures test. 
subject      = [(1:n_channels)';(1:n_channels)']; 
condition    = [ones(n_channels,1); ones(n_channels,1)*2]; 
factors      = [condition subject]; 
performposthoc = [1 0]; 
 
[contrasts]     = wfANOVA (data, factors, performposthoc); 

 
To use this function as a one-way between subjects wfANOVA the MatLab script should look like: 

 
data  = [p_norm1; p_norm2 ];  
nsub1         = 8; % amount of subjects in group 1 
nsub2         = 4; % amount of subjects in group 2 
subject      = [(1:(nsub1±nsub2))'];  
condition    = [ones(nsub1,1); ones(nsub2,1)*2]; 
factors      = [condition subject]; 
performposthoc  = [1 0]; 
 
[contrasts ]    = wfANOVA (data, factors, performposthoc); 

Appendix B 

Additional figures 
Asymmetry was investigated using a wfANOVA method resulted in the following contrasts for the 
healthy individuals. Even for healthy individuals the power spectra of the hemispheres differed 
significantly. However, in most cases these differences were small and only present at a few 
individual frequencies, with one exception.  

 δ   θ    α    β 
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Figure B1 Asymmetry analysed using a wfANOVA method resulted in significant differences between the hemispheres. Most 
of the time these differences were small and present at a few individual frequencies instead of a large part of the frequency 
band, except for one individual. There was no frequency at which all individuals showed a significant difference. 

 δ   θ    α    β 
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Reliability of the BSI within and between measurements.

 
 
Reliability of the DAR within and between measurements. 
 

 
BSI over a range from 1 to 25Hz. 

  

Figure B6 The BSI of healthy individuals and chronic stroke 
patients over a frequency range from 1 to 25 Hz. A BSI based on 
the alpha band only (8-12Hz) did not improve the discrimination 
between chronic stroke patients and healthy individuals, while a 
BSI based on the theta band only (4-8Hz) did. 

Figure B3 BSI test-retest. No significant 
difference was found between the test and retest 
of the BSI (Z=11, p=0.917). 

Figure B2 BSI within a measurement consisting of five trials. Each line 
represents one individual. Wilcoxon Signed-Ranks Tests indicated that 
the BSI did not differ between the consecutive trials within a 
measurement.  

Figure B4 DAR of five trials within a measurement. Each line represents an 
individual. A Wilcoxon Signed-Ranks Test indicated that the DAR does not 
seem to differ between consecutive trials within a measurement. 

Figure B5 No significant difference was found 
between the test and retest of the DAR (Z=14, 
p=0.463). 
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P1 

P2 

P3 

P4 

Figure B7 DAR per channel for each of the chronic stroke patients. Vertical lines separate the electrodes above the left 
hemisphere, the midline and the right hemisphere. In P1, P3 and P4 a clear difference can be seen in the DAR of the 
different hemispheres. P2 contains an outlier which could be the cause of the observed difference.  
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Trend lines between the EEG-parameters and clinical test scores.
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure B8 Trend lines between BSIθ and ARAT, and between BSIθ and FMA of the chronic 
stroke patients (N=4). Dots represent data points, lines represent linear trend lines. 
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Figure B9 Trend lines between DARlesioned and ARAT, and between DARlesioned and FMA 
of the chronic stroke patients. Dots represent data points, lines represent linear trend lines. 
A. All chronic stroke patients (N=4). B. P4 (DARlesioned = 0.74) excluded (N=3), as it may 
be considered to be an outlier. 
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Appendix C 

Methodological choices and recommendations 
 
BSI 
As mentioned before, increased power due to other causes than increased brain activity may bias the 
BSI. Focal seizures for example, referring to rhythmic muscle contractions of unilateral facial muscles, 
will increase the BSI (Van Putten and Tavy, 2004). This underlines the importance of accurate 
observations during the measurement.  

In the calculation of the BSI, spectral power was used to calculate the BSI after which it was 
averaged over the frequencies and electrode pairs. However, averaging implies that there is a possibility 
of a normal distribution. This is not the case when spectral power was used because spectral power can 
range from zero to infinity. Therefore, normally the spectral power will be log-transformed before they 
will be used. By a log-transformation the spectral power will be distributed around zero, which will enable 
a normal distribution. For this reason it is proposed to investigate whether a log-transformed power 
spectrum should be used for the calculation of the BSI. 

Something that should be considered carefully is the way of calculating the BSI. The BSI can be 
calculated as was done in the current study, by first calculating the BSI of each channel-pair, after which 
these values are averaged. This calculation was based on the calculation method using by Van Putten 
and Tavy (2004). Another way of calculating the BSI is by calculating the average spectral density over 
each hemisphere, after which the difference was calculated (Van Putten et al., 2004). If the power of the 
lesioned hemisphere is lower compared to the non-lesioned hemisphere at every channel-pair, there will 
be no difference in outcome. However, if the power is at some channel-pairs higher at one hemisphere 
and at other channel-pairs higher at the other hemisphere, these two calculations will result in different 
outcomes. It should be analysed whether this influences the results and discrimination between healthy 
individuals and stroke patients. 
 
DAR 
Also the DAR can be calculated in different ways. In the current study the DAR was calculated as the DAR 
of each electrode separately after which it was averaged over all electrodes as was done by Finnigan and 
van Putten (2013). Another way of calculating the DAR is by first averaging the power spectra of all 
electrodes after which the DAR was calculated based on one mean power spectrum (Finnigan et al., 
2004; Finnigan et al., 2007). These two ways of calculating lead to different outcomes. One major 
disadvantage of calculating the DAR based on the average power spectrum is that electrodes which have 
a higher spectral power will predominate the DAR value. This can be overcome by normalization of the 
power spectra of the electrodes before averaging. Moreover, the advantage of the first calculation 
method is the possibility to look at the DAR per brain location. Therefore, in the current study this 
method was used to calculate the DAR.  

The DAR was calculated per channel where after they were averaged. Averaging assumes uniform 
distribution. However, Figure B7 shows that this is not always the case. For example in the case of P2, 
which contains an outlier at the lesioned side. Therefore, it is proposed to consider the use of the median 
instead of the mean in the calculation of the DAR. However, it has not been investigated to which extent 
this influenced the results. 
 
wfANOVA  
Wavelet based functional ANOVA was used to be able to compare the normalized power spectra between 
the hemispheres or between individuals for each frequency while avoiding the multiple comparisons 
problem. A more simple method to compare power spectra is by using a two-sample Kolmogorov-
Smirnov test. Using this test, it can be investigated whether the distribution of two power spectra are 
similar. However, if this test shows that the distribution of 
the power spectra is not equal, contrary to the wfANOVA it 
does not give information about the frequency band at 
which the discrepancy is located. This emphasizes the value 
of a wfANOVA. 

Normally, the power spectra will be log-transformed 
before they will be used in statistical tests. This is because 
spectral power can range from zero to infinity, which makes 
a normal distribution impossible. By a log-transformation 
the spectral power will be distributed around zero. This will 
enable a normal distribution, which is important in statistics. 
However, in this study the power spectra were transformed 
to the wavelet domain where after the wavelets were 
compared. Log-transforming the power spectra will result in 
a function which is not as quickly converging as a normal 
power spectrum (Figure C1). Therefore, it will require more 
wavelets to describe a log-transformed power spectrum, 
consequently more tests should be done. For this reason the 

Figure C1 An example of a normalized power 
spectrum. A normalized power spectrum is more 
quickly converging compared to a log-transformed 
power spectrum. Therefore, the former can be 
described with less wavelets, resulting in a lower 
number of comparisons in the wfANOVA.  
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untransformed normalised power spectra were used as input of the wfANOVA. 
The wfANOVA as developed by McKay et al. (2013) is based on 3rd order coiflet-type wavelets. 

However, there are several other possible wavelet types which can be eligible to use for the description 
of power spectra. Wei et al. (1997) showed that coiflets are excellent when approximating the sampling 
of a smooth function. As a power spectrum seems to be a smooth function, coiflet-type wavelets are 
assumed to be a good choice. However, whether other wavelet types or other order coiflet-type wavelets 
are better to describe power spectra should be investigated. 

In order to be able to compare power spectra, they should be normalized. In the current study a 
normalization technique as dividing the power spectra by the total power was used. However, one should 
be careful using such a technique. It can for example result in ‘mixing’ in band specific brain results to all 
other bands. Therefore, the normalization of a power spectrum will be dependent on the curve of the 
power spectrum that was normalized, for example with a high power at a certain frequency band. 
Another option is to normalize by dividing the power by the total power in higher frequency bands, in 
which the power is more attributable to unspecific noise and less to brain activity. However, these 
frequency bands can also consist of power due to muscle activity when a subject was not completely 
relaxed. In this study the amount of muscle activity was not measured. Therefore, the first normalization 
technique was used. In future studies it is recommended to measure muscle activity of the neck muscles 
to be able to correct for this and to be able to use the second normalization technique to see whether 
this leads to different results. 

In conclusion, the input of the ANOVA in this wfANOVA function are wavelets. In this function it has 
not been checked whether the wavelets are normally distributed and whether there is homogeneity of 
variances. When these assumptions are violated a non-parametric test should be used instead of the 
ANOVA. For the asymmetry calculation per individual a Friedman test should be implemented to be able 
to execute a dependent non-parametric repeated-measures ANOVA. For the analysis of the differences in 
power spectra between individuals the implementation of an independent non-parametric ANOVA as the 
Kruskal-Wallis will be proposed.   
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Appendix D 

Additional analyses – Functional connectivity 
In the rehabilitation medicine there is a demand for a way to relate arm function recovery to brain 
activity. Besides the evaluation of the brain symmetry index, delta alpha ratio and analyses based on 
wfANOVA, the author of this study has initiated the development of an analysis concerning functional 
connectivity in stroke patients. Therefore, this appendix will focus on functional connectivity, which can 
be calculated from resting state EEG data and may be an interesting variable to investigate in the 
longitudinal 4D-EEG study. However, it was not tested on all participants. Therefore, the author was not 
able to refine the method or draw any conclusions. Nonetheless, it deserves further study. 
 
Structural damage caused by stroke is focal rather than diffuse. Though, due to physiological 
impairments in distributed functional networks stroke is associated with both local and global changes in 
brain function (Carter et al., 2012a). Recovery of function after stroke is largely due to reorganization of 
activity in existing (sub)cortical networks. Therefore, a connectivity based approach will provide insight 
into network reorganization during recovery (Carter et al., 2012a). The reorganization is not only visible 
when the networks are active, but also in resting-state networks. For this reason, resting-state activity 
may relate to behavioural deficits (Carter et al., 2012a).   
 
Based on the relation between brain activity and arm function five regions of interest were chosen; the 
left premotor area (PMA_L), right premotor area (PMA_R), left primary motor cortex (M1_L), right 
primary motor cortex (M1_R) and the supplementary motor area (SMA). It was tried to create a method 
to quantify the connectivity between these five regions of interests. A way of quantifying this is by 
calculating the functional connectivity (FC) between these regions (Nolte 2004). FC is defined as the 
similarity in shape of the frequency spectra of the time series between spatially remote 
neurophysiological processes in rest (Carter et al., 2012a). One of the most simple ways of reflecting 
connectivity is by calculating coherence (Nolte et al., 2004), which is the modulus of coherency. 
However, because of the fact that electrodes on the scalp are close to each other a source of activity will 
be measured by several electrodes. This is caused by volume conduction. In this way the activity seems 
to be caused by multiple sources which are active at the same time in phase or anti-phase, instead of 
just one source of activity. However, when two brain regions are functionally connected, they will not be 
active at exactly the same moment. To be sure that the connectivity is caused by two different sources, 
there should be a phase lag. This information is not located in the modulus but in the imaginary part of 
coherency (Nolte et al., 2004). Therefore, the imaginary part of coherency was defined as the functional 
connectivity. 
 
Corticospinal tract damage results in decreased interhemispheric resting-state FC (Carter et al., 2012b). 
In accordance with this, Zhang et al. (2014) stated that the resting-state FC between the ipsilesional M1 
and the contralesional motor cortex was decreased in acute stroke, followed by a gradually increase 
during the recovery process. Eventually, in complete recovered patients the normal resting-state FC level 
was reached or even exceeded (Zhang et al., 2014). This positive association between resting-state FC 
and the amount of functional recovery is supported by Urbin et al. (2014) who found that the strength of 
homo- and heterotopic resting-state FC was lower in chronic stroke patients who still suffer from 
hemiparesis compared to healthy controls. In addition, patients showing stronger interhemispheric 
connectivity were less impaired (Urbin et al., 2014; Chen and Schlaug 2013). The interhemispheric 
connectivity is not the only process which influences the upper limb function. A general concept is that 
successful control of M1 by the ipsilateral motor control areas is important for upper limb function 
(Grefkes et al., 2008). Grefkes and colleagues concluded that a dysfunctional interaction between SMA 
and M1 may contribute to motor disability because of the loss of driving input exerted by the SMA 
(Grefkes et al., 2008).  
 
Between the five regions of interest a network of ten connections can be formed. For each of these 
connections the FC can be calculated. The Functional Connectivity has not yet been investigated using 
this analysis design. In future research it should be investigated whether this way of analysing Functional 
Connectivity makes it possible to discriminate stroke patients from healthy individuals and whether it 
changes during the recovery period of stroke patients.  
 
After the calculation on electrode level the calculation can also be conducted on source level. In this 
study the position of the electrodes and the anatomical landmarks of the nasion and both pre-auricular 
points were digitized using a 3D infrared camera system (Xensor 3D Electrode Digitizer) before EEG was 
recorded, to localize the electrodes and to be able to match the electrode position with the anatomical 
MRI. A MRI of the head of each participant was made in the VU Medical Centre using a 3 Tesla whole 
body MR scanner. This resulted in a high-resolution T1-weighted structural image. During the MRI 
measurement all subjects were instructed to remain as motionless as possible, foam padding was used 
to minimize head motion. Besides, earplugs were used to reduce scanner. In this way for each region of 
interest a source can be localized instead of the calculation based on the electrodes covering these 
regions of interest which is quite arbitrary.   
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Overall Functional Connectivity  
Calculation of functional connectivity between all electrodes was done using the following Matlab code: 
First a frequency analysis using the FieldTrip Toolbox (Oostenveld et al., 2010). 

cfg = []; 
cfg.output = 'powandcsd'; 
cfg.method = 'mtmfft'; 
cfg.foilim = [1 100];  
cfg.taper = 'hanning'; 
cfg.keeptrials = 'no'; 
freq  = ft_freqanalysis(cfg, RS_clean); 
 

In this code ‘RS_clean’ corresponds to artifact-free resting-state EEG data. After this frequency analysis 
functional connectivity can be calculated as the absolute value of the imaginary part of coherency. 
 

for i = 1:length(freq.freq)  
     for   j=1:length(freq.labelcmb)  

Cab(j,i) = freq.crsspctrm(j,i);  
Pa(1,i) = freq.powspctrm(I.(cell2mat(freq.labelcmb(j,2))),i);  
Pb(j,i) = freq.powspctrm(I.(cell2mat(freq.labelcmb(j,1))),i);  
coherency_matrix(j,i) = Cab(j,i)/sqrt(Pa(i) * Pb(j,i)); 

   end 
end 
coherency_imaginarypart_absolute_mean =mean(abs(imag(coherency_matrix))); 
 

Functional Connectivity per region of interest 
Electrodes per region of interest (Figure D1): 
C1-C3-C5-FC3-CP3 = left primary motor cortex (M1_L), bright blue. 
C2-C4-C6-FC4-CP4 = right primary motor cortex (M1_R) , dark blue. 
FC1-FC5-F1-F3-F5 = left premotor area (PMA_L), yellow. 
FC2-FC6-F2-F4-F6 = right premotor area (PMA_R), orange. 
FCz = supplementary motor area (SMA), green. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D1 Electrodes covering the regions of interest based on a template brain. Yellow = left premotor 
cortex, clear blue = left primary motor cortex, green = supplementary motor cortex, orange = right 
premotor cortex, dark blue = right primary motor cortex. 
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Network 
The network of five ROI’s consists of ten connections (Figure D2). The FC of a connection can be found 
by averaging the FC of all possible connections between the two regions of interest of that connection. 
For example, the FC between the left and right primary motor area (M1) will be the average of the 
twenty-five possible connections between these two ROI’s. The value of the FC will be compared to the 
overall functional connectivity between all electrodes. If a line turns red, this connections is not 
significantly different from this baseline value. If it turns green, it is significantly increased or decreased 
compared to the baseline value. The diameter of the dots reflect the mean power measured at the 
electrodes covering that ROI. A larger power will be reflected by a larger diameter. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 SMA

PMAL   PMAR

M1L   M1R

Functional Connectivity

Figure D2 Network projected on a head, in order to display the network more clearly. The 
location of the dots which reflect the regions of interest do not correspond to the exact location 
of the regions of interest. Green lines correspond to functional connectivity between ROIs 
which is significantly different from overall functional connectivity. Red lines correspond to 
non-significant functional connectivity. Larger diameter of the circles reflect larger average 
power at that ROI. 




