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Summary  
 
Background: 
Knee osteoarthritis (KOA) significantly affects physical function. Conventional physical function measures 
do not include movement quality information and do not correlate well. We proposed a machine learning 
approach including kinematics of gait and single-limb mini squat (SLMS) for classifying physical function.  
 
Aims: 
The aims of this study were: to highlight advantages and limitations of 1) conventional univariate and 
multivariate statistical methods, and 2) a new machine learning approach using a multidimensional data 
set of patients with KOA and healthy controls, and 3) to evaluate classification performance of binary 
classifications discriminating patients and controls based on input feature sets containing conventional 
physical function measures with or without kinematic parameters and time series. 
 
Methods:  
In 40 patients and 25 controls kinematics were recorded while walking or performing the SLMS test. 
Conventional physical function measures, spatiotemporal characteristics and discrete kinematic parame-
ters were compared between patients and controls using multiple independent t-tests. Kinematics time 
series were analysed using principal component analysis (PCA). An artificial neural network supervised 
machine learning approach was used for classifying subjects as patient or healthy controls based on all 
previous input features. Different feature sets were statistically compared in terms of classification accu-
racy, sensitivity and specificity. 
 
Results:  
Univariate statistics did not take into account covariance between variables so redundant information 
was measured. This decreased the chance of finding significant differences due to Bonferroni corrections. 
PCA builds on covariance and allowed large data reductions but interpretation appeared to be less  
intuitive. Machine learning was able to handle multimodal data sets and resulted in high classification 
accuracies, sensitivities and specificities. 
 
Conclusions:  
Machine learning is a useful approach in handling multimodal data sets but it should be used in combina-
tion with educated guesses. In future research, this approach could be useful for classifying physical 
function in patients with KOA in multiple classes by unsupervised machine learning. 
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1 Introduction 

Problem statement 
Three-dimensional (3D) movement analysis has become an established method in studying biomechani-
cal responses to pathology in several functional tasks. Mostly, gait is analysed. It provides detailed in-
formation about joint angles, forces and moments over time during a movement. Quantifying movement 
offers the opportunity to compare groups with and without a certain pathology or before and after a 
therapy which may assist in gaining insight in the cause, progression and treatment of the pathology. In 
the clinic, the use of 3D movement analysis could assist in diagnosing, monitoring disease progression, 
evaluating treatment effects and treatment planning.    
Despite its principal benefits, 3D movement analysis is not widely used in the clinic yet1, besides gait 
analysis in children with cerebral palsy2. This may have several causes. In the first place, a large amount 
of data is produced3,4: marker trajectories, and angles, forces, moments and powers of multiple joints 
are calculated over time. In the second place, the data set is high-dimensional4: time series of multiple 
dimensions (for example, angles and EMG) as well as discrete anthropometric variables are included. In 
the third place, different movement time series are highly interdependent4,5, in general in a non-linear 
manner4. In addition, the total variability is high due to inter- and intra-subject and inter- and intra-trial 
variability and variability in marker placement, which weakens statistical power4. These problems are 
significant barriers with respect to interpretability, which makes clinical decision making assisted by the 
results of a 3D movement analysis difficult6.  

Standard statistical approaches 
The question rises how to reduce the data in a meaningful manner that allows statistical comparison 
between groups or conditions1,4, for example between groups with and without a certain pathology or 
between pre- and post-treatment conditions. Two common approaches are to select discrete parameters 
from kinematic time series and to do multiple t-tests, or to reduce the amount of time series by means of 
a principal component analysis (PCA). 
The first approach is a univariate statistical approach that is often used in studying gait. Common prac-
tice in the field of analyzing gait data is the definition and selection of parameters such as peak values 
and ranges at certain percentages of the gait cycle from angle, force, moment or power waveforms4,7–10. 
Patients’ parameters can be compared to average “normal” parameters or literature values to draw con-
clusions that are clinically relevant, such as detection of abnormality11. 
Although this data reduction is often based on an educated guess, the choice of which parameters to 
select is very subjective1,12,13. Moreover, there can be significant inter-subject variation in the observed 
gait waveforms14 and selection of predefined parameters from an atypical waveform may require user 
intervention1,12. It may be impossible to define certain parameters, for example in pathological data4,15,16. 
And, temporal information as represented by the complete waveform is lost1,4 by this way of reducing 
data.  
Whereas univariate statistical methods cannot account for covariance between variables, multivariate 
statistical methods can. Principal component analysis is a multivariate statistical method that is also 
suitable for analyzing time series. It re-expresses the data by projecting them onto less, linearly uncorre-
lated principal component (PCs) axes that lie in the orthogonal directions of maximal variance (of the 
projected subspace). It can be used to reduce the amount of time series needed to describe a move-
ment17. This approach may be considered more objective compared to simple univariate statistics, since 
the data reduction is based on features that are extracted by the analysis technique instead of the user, 
and because data from the entire gait cycle are considered1. This comes at the cost of a less intuitive 
interpretation of the results. However, if results are interpreted, they could give valuable insight in hu-
man coordination patterns using only a hand full of variables17,18.  

Machine learning 
Along with the progress in 3D movement analysis acquisition techniques, data analysis techniques have 
improved. In addition to conventional summary statistics as mean and standard deviation, more elabo-
rate measures such as Lyapunov exponents and other stability-related measures can be calculated. Kap-
tein et al. 13 hint at a potential caveat in movement analysis: they warn for a bias when selecting 
measures a priori without thorough theoretical considerations. They recommend a more unbiased meth-
od to determine a measures relevance: machine learning combined with a priori knowledge (i.e. the 
aforementioned educated guess). This minimizes user intervention by combining many candidate 
measures and classifying according to the ones that discriminate13. This novel multivariate approach has 
the unique property of being able to handle multimodal data since artificial neural network machine 
learning algorithms are based on non-linear statistics19. The conventional uni- and multivariate ap-
proaches are both linear.  

Classifying physical function in patients with knee osteoarthritis 
The machine learning approach was used to classify physical function in patients with knee osteoarthritis 
and healthy controls based on a multidimensional data set. Knee osteoarthritis (KOA) is a degenerative 
joint disease that leads to pain, stiffness, decreased range of motion (ROM), progressive articular carti-
lage breakdown and changes in underlying subchondral bone and synovium of the knee20,21. OA is the 
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most prevalent joint disease worldwide20,22,23 and the knee is one of the most affected sites24. The aetiol-
ogy of KOA is not yet fully understood25 but risk factors include aging, BMI, female sex, decreased quad-
riceps strength, malalignment and genetics26. As a consequence of the unknown aetiology, treatment 
mainly focuses on symptom relief21,27. 
From patient perspective, physical function is an important treatment outcome measure28 and optimizing 
it is a major aim in KOA treatment29. It is defined as an individual’s ability to perform activities of daily 
living29–32. Currently, two physical function outcome measures exist: patient-reported outcome measures 
(PROMs) and performance-based (PB) tests. In PB tests, capacity or maximal performance is 
measured32,33. PROMs, by contrast, are questionnaires that measure perceived level of functioning during 
daily activities30–32, so perception of performance is measured33. In KOA, a common PROM is the Knee 
injury and Osteoarthritis Outcome Score (KOOS) questionnaire34. A PB test that is suitable for KOA pa-
tients is the single-limb mini squat (SLMS) test35, which measures the maximum amount of knee bend-
ings in 30 seconds. The two types of measurement are considered complementary33,36,37, which is illus-
trated by low-to-moderate correlations between PROMs and PB tests28,36,38,39. Consequently, to evaluate 
physical function, both tools have to be used36,40. However, no information on movement quality is used 
to evaluate physical function. Such information can be gathered by visual analysis of movement quality 
by clinicians41 and by 3D movement analysis of gait and SLMS.  
I used an artificial neural network machine learning approach for classifying physical function in patients 
with knee osteoarthritis. This approach generally allows for the combination of basic personal character-
istics, conventional physical function measures, clinicians’ movement quality ratings and kinematic pa-
rameters and time series (i.e. multimodal data).  As a first step towards an automatic classification sys-
tem to assist in screening, diagnosing, and planning and evaluating treatment12, a binary classification 
discriminating patients and healthy controls was tested. Previous research resulted in maximal classifica-
tion accuracies from 72-100%1,12,22,42,43. Only two articles included gait kinematics1,43 and only angles of 
the affected knee were analysed. I proposed that including whole-body kinematics may enhance classifi-
cation accuracy, since OA in one joint has strong influence on kinetics and kinematics in other joints44. 
Since a physical function classification tool should include multiple movements resembling daily activities, 
SLMS kinematics were also included in the data set. 

Aims  
The aims of this study were: 1) to highlight advantages and limitations of existing univariate and multi-
variate statistical methods using a multidimensional data set containing basic personal characteristics, 
conventional physical function measures, clinicians’ movement quality ratings and gait and SLMS kine-
matic parameters and time series of patients with KOA and healthy controls, 2) to test a new multivari-
ate supervised machine learning approach on this data set and highlight advantages and limitations of 
this approach, and 3) to evaluate classification accuracy, sensitivity and specificity of binary classifica-
tions discriminating patients and healthy controls based on input feature sets containing conventional 
physical function measures with or without kinematic parameters and time series. 
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2 Methods & Procedures 

2.1 Participants 
Participants were 40 patients with knee osteoarthritis and 25 age- and gender-matched healthy controls. 
Patients were recruited from two orthopedic departments in Stockholm, Sweden. They were included if 
they (1) had physician diagnosed primary KOA and (2) were scheduled for unilateral total knee replace-
ment surgery within one month after data collection. Healthy controls without any known musculoskele-
tal disease were recruited through acquaintances. This control group was matched to the KOA group by 
age strata across five age groups (40-49, 50-59, 60-69, 70-79, 80-89 years of age). 
Additional inclusion criteria for both patients and controls were (1) to be able to walk 10 meters repeat-
edly without the use of a walking aid, and (2) to be able to understand verbal and written information in 
Swedish. Participants were excluded if they had had total joint replacement of the hip or knee in the last 
12 months or other major orthopedic surgery in the lower extremities, if they had rheumatoid arthritis, 
diabetes mellitus, a neurologic disease and/or another condition affecting walking ability.  

2.2 Data collection of subject characteristics and gait and SLMS kinematics 
All data were collected in the gait laboratory of the Karolinska Institutet by a physical therapist assisted 
by a technician. After signing informed consent and collection of basic personal information such as age, 
gender, height, weight and BMI, physical function was measured via existing measures: two patient-
reported outcome measure questionnaires and one performance-based test. PROMs were the Knee injury 
and Osteoarthritis Outcome Score (KOOS) questionnaire34, measuring functional status and quality of 
life45 (QoL), and the EQ5D-3L46, measuring the health-related QOL46. The performance-based test was 
the single-limb mini squat test35. It aims to measure lower extremity function40 resembling conditions of 
daily  life, such as stair ascent/descent47, by counting the maximal amount of knee bendings on a single 
leg as possible in 30 seconds. Subjects performed a single-limb mini squat test on both legs. They were 
free to choose which leg to start with. Subjects were instructed to start in stance, with the long axis of 
their stance foot aligned with a straight line and their toes placed on a perpendicular line. Fingertip sup-
port for balance was provided. The aim was to bend their knee as many times as possible in 30 seconds, 
without bending forward from the hip and until the line along the toes could no longer be seen (at about 
30⁰ of knee flexion)35. Prior to or after the SLMS tests, subjects were asked to repetitively walk 6 meters 
at their own preferred speed.   
For each SLMS and gait trial, three-dimensional movement analysis data were recorded by the Vicon 
Nexus Plug-In-Gait model48; resulting in 3D time series of marker positions, center-of-mass (CoM) and 
joint angles of the upper and lower body. Each SLMS test was recorded with a frontal video camera cap-
turing the lower body and trunk to be able to collect clinicians’ movement quality ratings.  

2.3 Data collection of clinicians’ SLMS movement quality ratings 
A clinician questionnaire including SLMS videos of 55 subjects was designed. Fifteen raters were recruit-
ed from two orthopedic departments of hospitals in Stockholm (Karolinska University Hospital and Ortho 
Center). Both medical doctors (N = 4) and physical therapists (N = 11) working with patients with knee 
osteoarthritis were included.   
One video per subject was selected for inclusion in a clinician questionnaire. For patients, this was the 
video of the affected leg. For controls, the video of a random leg was selected. For time reasons, only  
the last ten seconds of squat performance were included. To ensure consistent video exposure duration 
to the raters, the squats of patients who could not perform 10 seconds of squatting were looped. The 55 
videos were presented in random order. Raters were blind to the health status of the subject in the vid-
eo. Raters were instructed to watch the full 10 seconds of squatting and in the subsequent 20 seconds 
rate overall movement quality on a 4-point ordinal scale, with a score of 1 representing ‘poor’ and a 
score of 4 representing ‘good’ overall movement quality. Raters were not given guidelines on which to 
base their ratings, as in 41,49. Rather, they were asked to rate overall movement quality and provide 
comments on which movement characteristics they based their rating. Raters were provided with 5 ex-
ample videos to get familiar with the protocol. Raters were instructed not to discuss their ratings with 
anyone and rewinding was not allowed.  
Prior to data collection, a test rating session was organized. Feedback on the lay-out and instructions in 
the questionnaire, time to rate and comment, the amount of rating scales to fill in and the visibility of 
video loops was incorporated in the final protocol as described above. 

2.4 Data pre-processing 
Before data pre-processing, for each control a random leg was selected to analyse as if it were the af-
fected leg in patients. All data were pre-processed in the Vicon Nexus Plug-In-Gait system and in Matlab 
version R2013a. Output of the Vicon system consists of marker position data, from which center of mass 
position data and joint angles are calculated. Marker position data were filtered using Woltring’s general-
ized cross-validation quintic spline with a predicted mean square error of 15mm to remove noise48. Gaps 
were interpolated using a cubic spline routine48. Sampling rate of the system was 100 Hz. Further pre-
processing was conducted in Matlab as described below for the gait and SLMS kinematics separately. 
Clinicians’ ratings were transformed (1 representing good and 4 representing poor movement quality) to 
make interpretation more comparable with KL scale (increasing KL score indicating more severe KOA). 
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    2.4.1   Gait 
For each person 5-16 gait trials were performed and recorded. The recorded part of each gait trial con-
sisted of two consecutive gait cycles (GC) (leg 1 and leg 2). Heel strike was manually defined using the 
Vicon interface. Per subject, one gait trial was selected. Since in many trials, marker trajectories were 
noisy or missing, not all angle curves could be calculated. Only trials in which all angle curves were 
available during one gait cycle of the affected leg in patients and of the randomly selected leg in controls, 
were included. Since marker trajectories of the shoulder, elbow, wrist, spine, neck, and head angles were 
noisy in most of the gait trials, these angles were excluded from analysis (likewise for the CoM data). If 
none of the trials met the criteria, the subject was excluded from the statistical analyses on gait kine-
matic data. If multiple trials met the criteria, the earliest trial was selected.  
The affected gait cycle was time normalized into 100 intervals (%GC), resulting in trunk and pelvis an-
gles, and hip, knee and ankle angles of the affected side as well as of the contralateral (CL) side (Appen-
dix Table A1). Gait spatiotemporal characteristics as listed in Table A2 (Appendix) were directly calculat-
ed using Vicon software. Discrete kinematic parameters listed in Table A2 (Appendix) were calculated 
manually from the time normalized gait cycle angle curves.  

    2.4.2   SLMS 
Each subject performed one SLMS test per leg, resulting in two SLMS test trials per subject. For patients, 
the trial of the affected leg was selected; for controls, the randomly chosen leg trial. Only trials in which 
all angle curves and all three CoM position coordinates (Appendix Table A1) were available were includ-
ed.  As in the gait trials, shoulder, elbow, wrist, spine, neck and head angles were noisy in most of the 
trials and were excluded from analyses. For patients who could not perform the SLMS with the affected 
leg, no kinematic data were available so these subjects are also not included in the analyses. CoM posi-
tion data were transformed from lab coordinates (left and right) into body coordinates (medial and lat-
eral relative to the toe marker of the performing leg) to be able to compare CoM position between sub-
jects performing the SLMS test with right and left leg.  
For the selection of discrete kinematic parameters, whole test time series were used. For the purpose of 
visual comparison of squat cycle (SC) time series patients and controls, cycle starts and ends were de-
fined by the time frames of knee extension peaks. Cycles were time normalized into 100 intervals 
(%SC). A mean time normalized squat cycle was calculated for each subject. 
The spatiotemporal SLMS characteristics and discrete kinematic parameters listed in Table A2 (Appendix) 
were calculated in Matlab.   

2.5 Statistical methods 
Statistical analyses were conducted with IBM SPSS Statistics version 20.0. For the machine learning 
approach, the Matlab multivariate statistical toolbox UPMOVE50 was used.  

     2.5.1  Univariate statistics  
Based on previous research, an educated guess was taken about kinematic or spatiotemporal features 
that discriminate between healthy subjects and patients with KOA. Hypotheses for spatiotemporal char-
acteristics and kinematic parameters are listed in Table A2 (Appendix).  
Multiple independent t-tests were performed for the subject characteristics, PROM and PB test scores, 
clinician’s rating and gait and SLMS spatiotemporal characteristics and discrete parameters derived from 
gait and SLMS kinematics. For data measured on nominal or ordinal scale and data that violated the 
assumption of normality, the non-parametric Mann-Whitney U-test was performed.  
To correct for the increased chance of type I error (finding a false significant difference) as a result of 
doing multiple univariate tests51, a Bonferroni correction was applied by dividing the single-test critical p-
value of 0.05 by the amount of tests performed (N = 44, see Appendix C1). The adjusted critical p-value 
for each test to reject the null hypothesis was 0.0011 (rounded off).   
Correlations between all subject characteristics (except for gender and KL score), PROM and PB test 
scores, clinicians’ ratings and gait and SLMS spatiotemporal characteristics and kinematic parameters 
were calculated to gain insight in the relationships between variables. If data violated the assumption of 
normality or were measured on a nominal or ordinal scale, Spearman’s rho was calculated instead of 
Pearson’s r. Percentage of variable pairs significantly correlating as well as the average correlation were 
calculated.  

     2.5.2  Multivariate statistics: principal component analysis 
Principal component analysis17 (PCA) was conducted on the gait and SLMS time series.  
 
     2.5.2.1 PCA input 
PCAGait  For every subject, a matrix of time series was constructed. This matrix consisted of 24 columns 
(see Appendix Table A1), each representing one joint angle. The 100 rows represented each time point 
on the gait cycle. Per column, the mean was subtracted (i.e. columns were detrended). All subjects’ data 
were concatenated, resulting in a detrended angle PCA input matrix of Nsubjects 100 rows by 24 columns.  
PCASLMS For each subject, a matrix of time series was constructed. This matrix consisted of 25 columns 
(see Appendix Table A1), each representing one joint angle or CoM position. The rows represented each 
time point during the SLMS test. For controls, this matrix had 25 columns by 3000 rows. Since some 
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patients could not squat for 30 seconds, their number of rows is smaller. Per column, the mean was 
subtracted (i.e. columns were detrended). All subjects’ matrices were concatenated, resulting in a 
detrended angle PCA input matrix of Nsubjects x Nframesoftest rows by 25 columns.  
 
     2.5.2.2 PCA output 
Output of the PCA consists of eigenvalues, indicating the amount of variance in the original data the 
corresponding PC accounts for, eigenvectors, describing the orientation of the PC axes in the old coordi-
nate system (consisting of the initial variables), and time series projections on the PC axes.  
Eigenvalues PC eigenvalue spectrum was plotted and the reduced number of PCs was determined using a 
90% trace criterion as in 17,52 based on the “Cumulative percentage of total variation”-rule of Joliffe 
(2002)53.  
Eigenvector coefficients The contribution of each original variable to each of the PCs was inspected by 
plotting the eigenvector coefficients17 of each PC.  To evaluate which original variables contributed signif-
icantly to each PC, a broken stick test was applied54. Phase relations between variables within each PC 
can be evaluated by interpreting the signs of the eigenvector coefficients. Opposite signs indicate an 
anti-phasic relation (180º phase difference) between the original variables, equal signs indicate an in-
phase relation between the original variables (0º phase difference). 
Time projections on PCs In combination with the eigenvector coefficients, we evaluated the time projec-
tions on each corresponding PC. For PCAGait, gait cycle time projections on each of the relevant PCs were 
averaged over all subjects, patients and controls. For PCASLMS, for each subject, the time projection of 
each squat cycle in the SLMS test was selected from the SLMS test time projection on each of the rele-
vant PCs. Each squat cycle time projection was time normalized into 100 intervals (%SC) and for each 
subject, an average squat cycle time projection on the relevant PCs was calculated. The average squat 
cycle time projections were averaged over all subjects, patients and controls.  
Frequency Power spectral density was estimated of the concatenated time normalized cycle time projec-
tions using Welch’s method55 with a window size of 100 and 30% overlap. Frequencies of the time pro-
jections were identified by visual inspection of the peaks in the power spectral density – frequency plots.  
Phase In order to check for pairs of PCs that are not independent, relative phases were calculated. Two 
variables having a 90º phase difference are not independent from each other, as is the case with sine 
and cosine time series (that per definition have a 90º phase difference). If you know the sine, the time 
series of the cosine is completely known. However, in state space sine and cosine describe a circle17, 
which can only be described in two dimensions. Identifying pairs of PCs with a 90º phase difference indi-
cates that the amount of dimensions to describe the original data in could be even more reduced by one 
PC per PC pair.  
For each PC, continuous phase was determined using the Hilbert transform as described in 18. Relative 
phase was calculated between all PCs with the same frequency. Average and standard deviation of phase 
and relative phase were calculated using directional (circular) statistics for all subjects, only patients and 
only controls. To test for significant differences in relative phase between patients and controls, the cir-
cular Kuiper two-sample test56 was conducted.  
Differences between patients and controls The variance of the time projection (𝜎𝜉2) of each subject’s 

gait/squat cycle on each PC was calculated and used as a measure of strength of that PC in that subject. 
To identify significant differences in the contribution of patients and controls to each PC, for each PC an 
independent t-test was conducted between 𝜎𝜉2 values of patients and controls. For data that violated the 
assumption of normality, the non-parametric Mann-Whitney U-test was performed. To correct for the 
increased chance of type I error (finding a false significant difference) as a result of doing multiple uni-
variate tests, a Bonferroni correction was applied57 by dividing the single-test critical p-value of 0.05 by 
the amount of tests performed (N = 24 (gait), N = 25 (SLMS), see Appendix Table A1). The adjusted 
critical p-value for each test to reject the null hypothesis was therefore 0.0021 (rounded off) for gait data 
and 0.0020 for SLMS data.  

2.6 Multivariate statistics: supervised machine learning 
Supervised machine learning was used for classifying physical function in patients with KOA and healthy 
controls. Due to the small data set58, a binary classification was made using KL score as a physical func-
tion class label. A subject belongs either to the class of patients or to the class of healthy controls. Pa-
tients have a KL score of 1 or higher (per definition) and healthy controls do not have a KL score (coded 
as a 0). During learning, these class labels provide feedback (i.e. supervision) to the machine learner. 

     2.6.1   Algorithm  
Learning vector quantization (LVQ)59 is a distance-based competitive-layer artificial neural network algo-
rithm. It consists of a competitive layer of neurons and a second output layer that has as many neurons 
as pre-defined classes. Each competitive-layer neuron is defined by a codebook vector of weights for all 
input features. The data set is divided in a training set of subjects for training the network and a test set 
for evaluating machine learner performance. Each subject is represented by an input vector containing 
the input features of that subject. During training subjects also have a target vector containing their 
class label. For each input vector, Euclidean distance to all neurons is calculated; the closest neuron 
wins. During training, codebook vectors of neurons are updated: if the prediction is correct according to 
the target vector, the winning neuron moves towards the input vector. If it was not correct, it moves 
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away and its weights are updated accordingly. During testing, no adaptations are made anymore. In-
stead, machine learner classification accuracy is evaluated by calculating the amount of correctly classi-
fied subjects as a percentage of the total amount of subjects in the test set. Sensitivity was calculated as 
the amount of correctly classified patients as a percentage of the total amount of patients in the test set. 
Specificity was calculated as the amount of correctly classified controls as a percentage of the total 
amount of controls in the test set.  

     2.6.2   Settings 
Our neural network consisted of a hidden competitive layer of 20 neurons and 2 output neurons (Figure 
1). As recommended by Kohonen, the LVQ1 algorithm is used with learning rate of 0.0560. For each run, 
a random half of the subjects was selected to serve as the training set. Since the data set consisted of 24 
controls and 31 patients, this resulted in 12 controls and 16 patients. The other half of the cases served 
as the test set. In each training phase, the input vectors of the training set were presented 500 times60. 
Each run resulted in one accuracy, sensitivity and specificity value. To be able to evaluate classification 
accuracy, sensitivity and specificity statistically, 50 runs per input feature set were executed.  

     2.6.3  Input features 
Input features are summarized in Appendix B. Subject characteris-
tics, spatiotemporal characteristics and discrete kinematic parame-
ters as studied in the univariate statistical method were used as 
input features. Additional input features were the cycle time projec-
tions (ξ) per PC and variance of those cycle time projections as de-
rived from the PCAGait and PCASLMS. For the reason of computational 
speed, only time projections and variance of those time projections 
on the reduced number of PCs as defined with the 90% trace criteri-
on were used as input features. If variance of time projections on 
higher PCs had turned out to be significantly different between pa-
tients and controls, the time projections and variance of those time 
projections were used as input feature, too. Eight different sets of 
input features were defined, combining the subsets “Subject charac-
teristics”, “Gait” and “SLMS” and in- and excluding the KL score. The 
largest set included 45 features.  

     2.6.4   Validation  
As a first test of machine learner validity, only the KL score was used 
as input feature. Because class labels are based on these KL scores, 
this should result in a classification accuracy of 100%. The same was 
realized by adding the KL score to the full feature set. 
 

     2.6.5   Influence of training set proportion  
To evaluate if increasing the proportion of the training set would result in higher classification accuracies, 
for the maximal feature set (all features without the KL score) two additional analyses were conducted. 
In the first, training set size was minimized, resulting in a training set of 1 control and 1 patient.  In the 
second, training set size was maximized, resulting in a training set of 23 controls and 30 patients. Mini-
mal and maximal training set proportion percentages were calculated for controls (1/24*100 for minimal 
and 23/24*100 for maximal) and applied to the patients to calculate the amount of patients in the mini-
mal and maximal training set. Values for patients were rounded off.  

     2.6.6   Statistical evaluation of classification accuracies, sensitivities and specificities  
To test for significant differences in classification accuracy between the different sets of input features, a 
Friedman’s ANOVA was conducted followed by post-hoc Wilcoxon signed-rank tests if Friedman’s ANOVA 

indicated a significant influence of input feature set on classification accuracy. In the post-hoc tests, a 
Bonferroni correction was applied since multiple univariate dependent t-tests are applied. Statistical tests 
were non-parametric and dependent as recommended by 61. 

2.6.7    Evaluation of discriminative features  
To evaluate the discriminative capacity of each feature, for each run of the maximal feature set (without 
KL score) weights of the connections between the input neurons, hidden competitive layer neurons and 
output neurons of the trained network (see Figure 1) were used to calculate the relative contribution (%) 
of each input feature data point to the class prediction of the machine learner using the method of Gar-
son62 described by Goh63. Average relative contribution for each input feature data point and standard 
deviation were calculated over all runs and both output neurons.  
The maximal feature set contains 45 features. Most features exist of only one data point, but the princi-
pal components (100 data points per PC) exist of more than one data point, resulting in a total of 1863 
data points. The contributions of each data point are summed to extract one relative contribution value 
per PC. Since PC contributions are the sum of multiple data points, comparing these values with the 

Figure 1. Artificial neural network  
consisting of an input layer of N 
neurons, a competitive hidden 
layer of X neurons and an output 
layer predicting two classes (Y). 
Each arrow represents a neuronal 
connection with weight WFeat_n,Neuron_x  
(input-hidden connection) or with 
weight WNeuron_x,Class_y (hidden-output 
connection). 
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contribution of single data points is unfair. Therefore, relative contributions of each feature were com-
pared visually with the relative contribution if each data point of the feature set would have contributed 
equally to classification (100/1863 = 0.054% (rounded off) per data point, so 0.054% * Ndatapoints). 
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3 Results 

Only data of subjects with both gait and SLMS kinematics were analysed except in the PCA, resulting in a 
subset of 31 patients and 24 controls.  Due to problems with marker visibility and noise, gait kinematics 
were not available or excluded for 1 patient and 1 control. For 8 patients and 1 control, no SLMS kine-
matics were used in analyses, either because the patient could not perform the test or because of prob-
lems with marker visibility and noise or with saving the recordings. 

3.1 Univariate statistics 

    3.1.1  Subject characteristics, PROM and PB test scores, clinicians’ ratings  
Subject characteristics, PROM and PB test scores and clinicians’ ratings are summarized in Table B1 (Ap-
pendix) and visualized in Figure 2. No significant differences between patients and controls were found in 
gender distribution, age and height. All patients had moderate to severe KOA as indicated by KL scores 
of grade 3 and 4. Patients had significantly higher weight and BMI compared to controls. All PROM scores 
were significantly lower (i.e. worse) for patients. In addition, patients performed significantly less knee 
bendings in the SLMS test and their movement quality received significantly worse clinicians’ ratings 
compared to controls. 

    3.1.2   Gait spatiotemporal characteristics and kinematics   
Regarding gait spatiotemporal characteristics, patients had significantly lower speed and stride length 
compared to controls (Appendix Table B2, Figure 2). Regarding the gait kinematics, no significant differ-
ences were found in trunk and pelvis parameters. Peak hip adduction during stance was significantly 
lower in patients. Patients had significantly lower peak knee extension and knee flexion-extension range 
of motion compared to controls. No differences were found in ankle kinematic parameters. 

    3.1.3   SLMS spatiotemporal characteristics and kinematics   
For the SLMS spatiotemporal characteristics, patients had a significantly lower limb symmetry index 
compared to controls (Appendix Table B2, Figure 2). For the SLMS kinematics, no difference was found in 
trunk tilt parameters. Knee flexion-extension range of motion was significantly lower in patients.  

    3.1.4   Correlations  
Of the 861 pairs of discrete variables, 368 correlations were significant (p < 0.05) (42.7%).  Average 
absolute significant Spearman’s rho was 0.46, with a minimum value of 0.17 and maximum value of 1.  
 
 

 
Figure 2. Normalized difference in means between patients and controls of subject characteristics, PROM and PB 
test scores, clinicians’ rating, spatiotemporal gait characteristics, discrete gait variables, spatiotemporal SLMS 
characteristics and discrete SLMS characteristics of patients and controls. Bars indicate difference between patients 
and controls, divided by the mean of all controls. Single stars indicate a significant difference between patients and controls at 
the level of p<0.05; double stars indicate a significant difference after Bonferroni correction. 
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3.2 Multivariate statistics: principal component analysis (PCA) 

     3.2.1  Eigenvalues and amount of PCs 
For both PCAs the first five principal components were needed to explain >90% of the variance in data 
(Appendix Table D1 & E1).  

     3.2.2  Eigenvectors and time projections of PCAGait 
Significant eigenvector coefficients for PCAGait are indicated by a star in Figure D2 (Appendix). Average 
time projections of patients and controls on each PC are depicted in Figure 3. Frequencies are depicted in 
Figure D1 (Appendix) and phase relations are summarized in Table D3 (Appendix).   
 

 
Figure 3. Average time projections of patients (red) and controls (blue) on PC1-5 in PCAGait. Bold lines indicate aver-
age time projections, dotted lines indicate standard deviations. Note the difference in y-axis scaling between subplots.  
 
Significant contributors to PC1gait were the hip flexion angle and contralateral hip flexion angle. Since the 
eigenvector coefficient of the affected hip had a positive sign and the coefficient of the contralateral hip a 
negative, the hips moved in anti-phase with each other (Appendix Figure D2, upper left panel). For 
PC2gait, the knee flexion angles were significant eigenvector coefficients. Again, the knees moved in anti-
phase (Appendix Figure D2, upper right panel) and in phase with the hip flexion pattern described by 
PC1gait. Both PC1gait and PC2gait had a frequency of once per gait cycle (stride event). However, an aver-
age phase difference of approximately 90º existed between PC1gait and PC2gait  (Appendix Table D3), 
indicating that PC1 and PC2 are not independent but together describe a pattern of 180º phase differ-
ence between the hips of both sides and between the knees of both sides, but with a 90º phase differ-
ence between hips and knee of the same body side. The hips flex a quarter of a gait cycle later than the 
knees (Appendix Figure D2, upper panels and Figure 3).  
For PC3gait, again knee flexion angles were the significant contributors. However, here the knees flexed in 
phase with each other (Appendix Figure D2, middle left panel). So, on top of the anti-phase knee flexion 
pattern described by PC1gait, an in-phase knee flexion pattern existed that had a frequency of twice per 
gait cycle, so once per step (Appendix Figure D1 and Figure 3). It thus represents a step event. On top 
of the already existing knee flexion pattern of PC2gait, during each step both knees exhibited flexion sim-
ultaneously. 
PC4gait had the same frequency as PC3gait (Appendix Figure D1), but a phase difference of approximately 
-90º (Appendix Table D3). Significant eigenvector coefficients of PC4gait were ankle dorsiflexion angles, 
as well as the contralateral foot progression angle and hip flexion angle. The hips flexed and ankles dor-
siflexed in an in-phase pattern that is in phase with the knee flexion pattern described by PC3gait but that 
is delayed with a quarter gait cycle (-90º phase shift). The feet toed in (foot progression angle) in anti-
phase with that pattern (Appendix Figure D2, middle right panel). So, during each step, a quarter gait 
cycle later than the knee flexion in PC3gait, both ankles dorsiflex and toe out simultaneously. On top of 
the anti-phasic stride hip flexion pattern of PC1gait, an in-phase hip flexion pattern existed that occurs 
twice per stride and a quarter gait cycle later than the in-phase step knee flexion pattern of PC3gait.  
The frequency of PC5gait was three times per gait cycle (Appendix Figure D1). Significant contributors to 
PC5gait were – again - ankle dorsiflexion angles, but also ankle and hip internal rotation angles (Appendix 
Figure D2). However, the coordination patterns described PC5gait were all anti-phasic regarding body 
sides, with ankle internal rotation occurring in anti-phase with the other two joint movements. 
PCAGait revealed significant differences between 𝜎𝜉2 of PCs 1-3 (Appendix Table D2). Patients had signifi-
cantly less variance in their time projections than controls on those PCs. So, patients exhibited the stride 
anti-phasic hip flexion pattern and the anti-phasic stride knee flexion pattern combined with the in-phase 
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step knee flexion pattern less than controls. The total explained variance by the PCs with a significant 
different 𝜎𝜉2 was 83.89% (Appendix Table D1). 

     3.2.3  Eigenvectors and time projections of PCASLMS 
All relevant PCs in PCASLMS had a basic frequency of once per squat cycle (Appendix Figure E1). Average 
time projections are depicted in Figure 4. Although visual inspection of Figure 4 indicates differences in 
time projection trajectories of PC2SLMS – PC19SLMS, this could not be quantified by the variance of the time 
projections: PCASLMS only revealed a significant difference between 𝜎𝜉2 values of PC2SLMS and PC19SLMS 
(Appendix Table E2).  
 

 
Figure 4. Average time projections of patients (red) and controls (blue) on PC1-5 and 19 in PCASLMS. Bold lines 
indicate average time projections, dotted lines indicate standard deviations. Note the difference in y-axis scaling between sub-
plots.  
 
PC1SLMS and PC2SLMS had an average phase difference of 90º, but standard deviation was high. Significant 
differences in average phase differences between PCs were found between patients and controls for the 
combinations PC1SLMS – PC3SLMS, PC2SLMS- PC4SLMS and PC2SLMS – PC19SLMS (Appendix Table E3).  
Eigenvector coefficients are depicted in Figure E2 (Appendix). The only significant contributor to PC1SLMS 
was the upward CoM coordinate. For both patients and controls, the PC1SLMS time projection decreases 
after a slight rise and subsequently increases again, reflecting the drop and rise in vertical CoM position 
during a squat.  
The upward CoM coordinate also significantly contributed to PC2SLMS. Other significant contributors of this 
PC were the knee flexion angle and ankle dorsiflexion angle of the squat leg. The time projection of 
PC2SLMS has a phase difference of approximately 90º with PC1 in both patients and controls (Appendix 
Table E3) and describes a pattern in which CoM downward movement starts earlier compared to PC1 
(and earlier in patients compared to controls, based on visual inspection). So on top of PC1, a phase 
shifted downward CoM movement combined with in phase knee extension and ankle plantar-flexion ex-
ists. This pattern is significantly more pronounced in controls compared to patients (Appendix Table E2). 
The coordination pattern described by PC2SLMS is somewhat counterintuitive. However, the combined 
knee extension and ankle plantar-flexion during the descending phase of the squat come on top of the 
pattern described by PC1SLMS. Although the only significant eigenvector coefficient was the upward CoM 
coordinate, in Figure E2 (Appendix) it can be seen that in PC1SLMS, the upward CoM coordinate is in anti-
phase with hip and knee flexion and ankle dorsiflexion. So the PC1SLMS pattern describes combined hip 
and knee flexion and ankle dorsiflexion during the descending squat phase.   
In PC1SLMS, the backward CoM coordinate was a non-significant eigenvector coefficient that was in anti-
phase with the upward CoM coordinate. So in PC1SLMS, a higher upward CoM position comes with slightly 
less backward lean. The backward CoM coordinate was the only significant contributor to PC3SLMS and it 
was in phase with the upward CoM coordinate. On top of the coupled squat rise – forward lean pattern, a 
squat rise – backward lean pattern is present. In controls, the time projection followed a trajectory simi-
lar to the time projection on PC1SLMS, but patients seemed to keep their backward lean more constant 
over the squat cycle. This difference is visible by a significant difference in relative phase between 
PC1SLMS and PC3SLMS between patients and controls (Appendix Table E3).  
The significant eigenvector coefficients of PC4SLMS, the contralateral hip and knee flexion angle, moved in 
phase with each other but in anti-phase with the previous PC contributors. Their time trajectories 
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seemed to be phase shifted relative to each other (Figure 4), with an earlier decrease in contralateral hip 
and knee extension in patients compared to controls. This indicates a pattern of increasing contralateral 
knee and hip flexion during the downward squat phase and decreasing it during the upward squat phase. 
Significant contributors to PC5SLMS was the mediolateral CoM coordinate, which was in phase with the 
contributors of PC1-3. During the downward phase of each squat, patients and controls move their CoM 
from medial to lateral.   
Since PC19SLMS appeared to have significantly lower variance of the time projections of patients com-
pared to controls (Appendix Table E2), it is interesting to evaluate which variables significantly contribute 
to this PC. Significant contributors to PC19SLMS were the trunk anterior tilt and internal rotation angle, 
pelvic anterior tilt angle, hip and knee internal rotation and ankle dorsiflexion angle. Ankle dorsiflexion, 
trunk and pelvis anterior tilt occur in phase with each other, but in anti-phase with trunk internal rota-
tion. Trunk and hip and knee of the squat leg internally rotate in phase with each other. This indicates 
that this pattern of ankle dorsiflexion and anterior tilt with simultaneous trunk, hip and knee external 
rotation is less pronounced in patients. However, the total explained variance by this PC was only 0.11% 
(Appendix Table E1) so it indicates only slight differences between patients and controls. 

3.3 Multivariate statistics: supervised machine learning 

     3.3.1  Validation 
As expected, the classification accuracy of the input feature set consisting of the KL score was 100% 
(median), with an interquartile range of 0. However, when adding all other features, classification accu-
racy significantly decreased to a median of 81.5 [18.5] (median [IQR]) (Appendix Table F1, Figure 5).  

     3.3.2  Classification accuracies, sensitivity and specificity values 
Classification accuracies of the different input feature sets are summarized in Table F1 (Appendix, left 
column) and Figure 5 (left panel). For classifications without KL score, maximal classification accuracy 
was 96.3% [3.7] (median [IQR]) when using the “Subject characteristics” subset either with or without 
the “Gait” subset. Minimal classification accuracies were achieved by the subset “SLMS” either with 
(74.1% [11.1) or without (74.1% [18.5]) the “Subject characteristics” subset.  
Friedman’s ANOVA indicated a statistically significant difference in classification accuracy between the 
sets of input features, χ2(8) = 266.613, p < 0.01. Post-hoc tests are summarized in Table F1 (Appendix, 
right column) and revealed a significantly higher classification accuracy of the “Subject characteristics” 
and “Subject characteristics + Gait” sets compared to all other sets. Additionally, the “Gait” set had a 

significantly higher classification accuracy compared to the “SLMS” set and the “Subject characteristics + 
SLMS” set.  
 

 
Figure 5. Classification accuracies for each set of input variables (left panel) and for the complete feature set 
without KL-score with minimal, standard and maximal training set (right panel). Tests including the KL score are 
colored red, tests without KL score are colored green. Boxes indicate median, first and third quartile. Whiskers indicate minima 
and maxima, unless outliers are present (dots). Stars indicate significant difference after Bonferroni correction.  
 
Sensitivities (Appendix Table F3, Figure 6 (left panel)) ranged from 100% [0.0] (median [IQR]) for the 
“Subject characteristics” set to 79.6% [8.3] for the “Subject characteristics + SLMS” set. There was a 
statistically significant difference in sensitivity between the sets of input features, χ2(7) = 193.634, p < 
0.01. Post-hoc tests revealed a significantly higher sensitivity of both the “Subject characteristics” and 
“Subject characteristics + Gait” sets compared to all other sets. The “Gait” set had a significantly higher 
sensitivity compared to the “Gait + SLMS”, “SLMS” and “Subject characteristics + SLMS” sets.  

*             * 
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Specificities (Appendix Table F4, Figure 6 (right panel)) ranged from 100.0% [0.0] (median [IQR]) for 
the “Subject characteristics + Gait” set to 92.6 [7.4] for the “Gait” set. A statistically significant differ-
ence in specificity existed between the sets of input features, χ2(7) = 77.271, p < 0.01. Post-hoc tests 
revealed a significantly higher specificity of the “Subject characteristics” and “Subject characteristics + 
Gait” set compared to all other sets. 
 

Figure 6. Sensitivity (left panel) and specificity (right panel) for 7 different input feature sets. Sensitivity is defined 
as the percentage of cases correctly classified as patients. Specificity is defined as the percentage of cases correctly classified 
as controls. Tests including the KL score are coloured red, tests without KL score are colored green. Boxes indicate median, first 
and third quartile. Whiskers indicate minima and maxima, unless outliers are present (dots). Stars indicate significant differ-
ence after Bonferroni correction. Note the difference in scale of the vertical axes and the different order of input feature sets on 
the horizontal axes. 

     3.3.3  Influence of increasing training set proportion 
A statistically significant difference in classification accuracy of the “All features without KL score” set was 
found between running the set with different training set proportions, χ2(2) = 18.121, p < 0.01. Classifi-
cation accuracies are summarized in Table F2 (Appendix) and Figure 5 (right panel). Post-hoc tests re-
vealed significantly lower classification accuracies of both the minimal (63.2% [17.5], median [IQR]) and 
maximal (50.0% [50.0]) training set sizes compared to the standard training set size (81.5 [14.8]). No 
significant difference was found between the classification accuracies of the minimal and maximal train-
ing sets. 

     3.3.4  Evaluation of discriminative features 
Relative contributions of each feature to classification are listed in Table G1 (Appendix) and visualized in 
figure 7. Gender, age, PB test score and all PROM scores except the EQ5D score had a relatively higher 
contribution compared to the situation in which all data points contribute equally to classification. This is 
also true for cadence, peak hip flexion and hip flexion ROM during gait, peak knee flexion over the gait 
cycle and during LR, knee flexion-extension ROM during gait, ankle plantar-dorsiflexion ROM over the 
gait cycle and pelvic anterior tilt during the gait cycle and at the start and end of single-stance. For SLMS 
kinematics, knee flexion-extension ROM and all anterior trunk tilt parameters contributed more than 
average to the classification. The variances of xi on the first five PCs of gait and on the first six PCs of 
SLMS contributed more than average per data point to class prediction. The relative contributions of PC1-
3 of gait and PC1-2 of SLMS were higher compared to the situation with equal data point contributions. 
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Figure 7. Relative contribution of input features to class prediction. Upper panel: subject characteristics, spatiotemporal 
characteristics and kinematic parameters for gait and SLMS. Lower left panel: SLMS test duration and gait and SLMS PCs. 
Lower right panel: variance of xi on each PC of gait and SLMS. Red line indicates the contribution if each data point had con-
tributed equally (calculated as Ndatapoints*100/1863 = 0.054%*Ndatapoints). Note the different scales of the vertical axes. No 95% 
confidence intervals are depicted due to their small size. 
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4 Discussion 

The aims of this study were to highlight advantages and limitations of existing univariate and multivari-
ate statistical methods and a new multivariate supervised machine learning approach on a multidimen-
sional data set of patients with KOA and healthy controls, and to evaluate classification accuracy, sensi-
tivity and specificity of binary classifications discriminating patients and healthy controls based on input 
feature sets containing conventional physical function measures with or without kinematic parameters 
and time series. 

4.1 Univariate statistics 
The conventional univariate statistical approach revealed significant differences between patients and 
controls in weight, BMI and all of the PROM scores, with patients having significantly lower physical func-
tion scores than controls. Patients had a significantly worse clinicians’ rating and performed significantly 
less knee bendings in the SLMS test. After Bonferroni correction in only 5 of the 29 proposed gait and 
SLMS spatiotemporal characteristics and kinematic parameters significant differences were found. Pa-
tients had a significantly lower gait speed and stride length, lower peak hip adduction during stance, a 
lower peak knee extension over the gait cycle and a lower knee flexion-extension ROM both during gait 
and SLMS. In addition, patients had a significantly lower limb symmetry index. 
I tested 44 variables based on an educated guess. It can be tempting to include even more variables in 
the hope of finding significant differences, even without educated guess. However, the sky is not the 
limit. As indicated by the high percentage of significantly correlated variables (42.7%) and the average 
absolute significant correlation of 0.46 with a range from 0.17 to 1, the covariance between variables is 
high. This means that some of the information is redundant. The higher the amount of variables to test, 
the lower the critical p-value level will be due to the Bonferroni correction51 to correct for the chance of 
finding a significant difference by chance (Type I error) and thereby decreases the chance of finding a 
significant difference that does exist. For example, in the present study both cadence and stride time 
were (erroneously) included in the univariate statistical approach. These variables are inversely related 
(correlation = -1) and thus, redundant information is measured. Doing two multiple t-tests will now re-
sult in a critical p-value level of 0.05/2, which decreases the chance of finding a significant difference 
relative to the critical p-value level of 0.05 if only one t-test had been conducted. This illustrates an im-
portant practical and theoretical disadvantage of the univariate statistical approach.  

4.2 Multivariate statistics: PCA 
Both principal component analyses resulted in a data reduction of 24 or 25 time series to 5 principal 
components explaining 90% of the variance in the data. This again points out the high covariance be-
tween variables (here: time series). PCAGait revealed two pairs of PCs, the first pair describing stride 
events and the first pair describing step events. PC1 and 2 describe a pattern of anti-phasic hip flexion 
pattern preceded by an anti-phasic knee flexion pattern a quarter gait cycle earlier during each stride. 
PC3 and PC4 describe a pattern of in-phase knee flexion followed by in-phase hip flexion and ankle dorsi-
flexion patterns a quarter gait cycle later during each step. The last PC captures ankle dorsiflexion and 
hip and ankle internal rotations at a frequency of 3 times per gait cycle. Patients were found to exhibit 
the stride pattern to a lesser extent than controls, as well as the in-phase step knee flexion pattern. This 
is in accordance with the finding of a significantly lower knee flexion-extension ROM during the gait cycle 
in patients in the univariate statistical approach. However, differences in hip flexion and ankle dorsiflex-
ion were only significant without Bonferroni correction in that approach. Previous PCA of gait of patients 
with KOA and healthy controls only included kinematic (and kinetic) time series of the knee, so results 
are not very comparable. However, from the knee angle curves, the knee flexion-extension ROM proved 
to be the most discriminative PC1, which is supported by our finding.  
PCASLMS revealed five PCs with a frequency of once per squat cycle. Eigenvector coefficients were domi-
nated by the CoM position time series. For the upward CoM coordinate, this can be explained by the fact 
that the standard deviation of the original time series was approximately 2-3x higher compared to all 
other time series.  
The pair of PC1 and PC2 together described downward-upward CoM movement achieved by a basic pat-
tern of in-phase ipsilateral hip and knee flexion and ankle dorsiflexion (PC1) with on top of it a pattern of 
in-phase ipsilateral knee extension and ankle plantarflexion (PC2). PC1 and 3 revealed a pattern of in-
phase upward-backward CoM movement (PC3) on top of the upward–forward CoM movement (PC1). 
Contralateral in-phase hip and knee flexion during the downward squat phase was captured by PC4 and 
PC5 captured lateral CoM movement during the downward squat phase.  
Only a significant difference in variance of the time projections on PC2SLMS and PC19SLMS were found be-
tween patients and controls. Patients exhibited the pattern of downward CoM position with in-phase ipsi-
lateral hip and knee flexion combined with ankle dorsiflexion (PC2SLMS) to a lesser extent than controls. 
This is in accordance with the finding of a significantly lower knee flexion-extension ROM during the 
SLMS test in patients in the univariate statistical approach. PC19SLMS was also found to have significantly 
lower variance in time projections of patients compared to controls. Patients exhibited a pattern of ankle 
dorsiflexion and anterior tilt with simultaneous trunk, hip and knee external rotation to a lesser extent. 
This difference is only subtle since PC19SLMS explains only 0.11% of the variance in the original data, but 
still, discriminative capacity can be high52. 
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Although only two PCs were found to significantly differ between patients and controls in PCASLMS, visual 
inspection of the time projections (Figure 5) indicated differences between patients and controls in timing 
of squat coordination. This could not be quantified by the variance of time projections, except in PC2SLMS 
and PC19SLMS. An appropriate method would be to calculate the average relative phase between patient 
and control time projections. Differences may be attributable to the slower squat speed in patients as 
indicated by the significantly lower amount of squats in 30 seconds (Table 3, Figure 1) and to the fact 
that patients moved less smooth compared to controls (reported by raters, results presented elsewhere). 
The latter might be related to the subtle differences in squat pattern described by PC19SLMS. 
A major advantage of PCA over the univariate statistical approach is that it accounts for the covariance 
between variables, as illustrated by the high eigenvalues of the first five PCs (> 90%). This makes it 
possible to analyse large numbers of time series and to reveal complicated coordination patterns by in-
terpreting eigenvalues, eigenvectors and time projections of a small number of PCs. The approach is 
considered less biased compared to the previous, since only the selection of input time series is subjec-
tive. The extraction of the reduced amount of meaningful variables (here: PCs) is fully objective. Togeth-
er, this makes PCA more suitable for exploratory studies13. In the present study, the use of PCA made it 
possible to include not only affected body side angle curves, as is common practice in the univariate 
statistical approach, but also unaffected body side angles.  
A disadvantage of PCA is that interpretation is time-consuming and less straightforward compared to the 
univariate statistical approach. In addition, both PCA and the univariate statistical methods are based on 
linear statistics so only linear relations can be revealed. Lastly, if you want to compare differences be-
tween two groups after PCA, a measure has to be selected to quantify the difference and again, multiple 
univariate statistical tests have to be conducted. So, still some subjectivity is present13. 

4.3 Multivariate statistics: supervised machine learning 
The validation with a feature set of only KL score resulted in the expected classification accuracy of 
100%. This was expected since subjects were either classified as patient or healthy control, with a pa-
tient defined as someone with a KL score (coded as a number between 1-4) and a healthy control as 
someone without a KL score (coded as a zero). However, adding all other feature subsets significantly 
decreased classification accuracy to 81.5% [18.5] (median [IQR]). The feature set including all features 
did not significantly differ from the feature set including all features but no KL score regarding accuracy 
and specificity. However, the feature set including all features had a significant higher sensitivity.  
The lower accuracy after adding features to the KL score indicates that the machine learner is influenced 
by non-relevant information. Ideally, this is not the case so further improvement of the machine learner 
algorithm is needed and classification accuracies, sensitivities and specificities reported in this study 
must be taken with caution. A method to improve the performance of the machine learner is to increase 
the weights of relevant input features manually. This is an important advantage of supervised learning. 
However, the relevance of features for classification is often not known. Still, in case of a validation trial, 
weights of the reference (here: KL score) can be increased. Network connections will adapt and network 
performance can be evaluated without the reference input feature. 
 
Maximal classification accuracies, sensitivities and specificities were achieved by the “Subject character-
istics” and “Subject characteristics + Gait” input feature sets, that had significantly higher accuracies and 
sensitivities than all other input feature sets. Adding the “SLMS” subset significantly decreased classifica-
tion accuracies and sensitivities, except for accuracy after adding the “SLMS” subset to the “Gait” subset. 
The “Gait” subset had significantly higher accuracies and sensitivities compared to the “Subject charac-
teristics + SLMS” and “SLMS” input feature sets.  
The maximal classification accuracy of 96.3% [3.7] is high compared to previous literature. Classification 
accuracies based on principal component analyses of gait knee angles, forces and moments alone1 or 
combined with gait spatiotemporal characteristics52 were 92% and 94%, respectively, but instead of 
machine learning, linear discriminant analysis was used. In the study by Kirkwood et al. 43 the same 
approach with gait knee angles alone led to a classification accuracy of 71.8%. Machine learning has only 
been used to classify patients and healthy controls based on knee forces and moments. Classification 
accuracies were 82.6% using a Bayes algorithm22, and 91% using a k-nearest neighbour algorithm12,42. 
Sensitivity and specificity were only reported in the study by Kotti et al. 22: a sensitivity of 0.77 and a 
specificity of 0.79 were achieved. Compared to these values, our maximal sensitivity 100.0 [0.0] (medi-
an [IQR]) and specificity (100.0 [0.0]) are high, as well as the sensitivity (100.0 [0.0] and 96.3 [4.6] for 
the “Subject characteristics” and “Subject characteristics + Gait” feature sets respectively) and specificity 
(96.3 [3.7] and 100.0 [0.0] for the “Subject characteristics” and “Subject characteristics + Gait” feature 
sets respectively) of our feature sets with highest classification accuracies (96.3% [3.7]).  
 
Since highest classification accuracies, sensitivities and specificities were highest for the “Subject charac-
teristics” input feature set, there is no need for adding gait or SLMS kinematic input features to conven-
tional physical function measures. Adding gait kinematics did not decrease classification performance, 
but adding SLMS kinematic input features did significantly decrease classification performance. This 
might have to do with the fact that, although only two PCs of SLMS significantly differed after Bonferrroni 
correction between patients and controls, input to the machine learner consisted of all significant PCs 
without Bonferroni correction (Appendix Table E2). Figure 7 indicates that only the first two PC time se-
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ries of SLMS have a relative contribution higher than in case of equal data point contribution. This may 
indicate that the “SLMS” feature set contains much non-relevant information. 
 
Variances of the time series of the principal components of both gait and SLMS turned out to be im-
portant discriminative features. When comparing their relative contribution (consisting of 1 data point) 
with the PC time series input features (consisting of 100 data points), the variance contributions appear 
to be in the same order of magnitude as the time series contributions but they are achieved by only 1% 
of the data points. In addition, only the first three (gait) and two (SLMS) PC time series had a relative 
contribution of more than 5.37% (rounded off, threshold of 100 data points * 0.054%) whereas variance 
contributions were almost all higher than the threshold. Therefore, in future research it would be in-
formative to evaluate classification performance after removing the PC time series or tuning down their 
connection weights as described above.  
When comparing the information that contributes to classification with the univariate statistical tests, it 
appears that the machine learner’s predictions rely to a large extent to pelvis, hip, knee and ankle angles 
in the sagittal plane, whereas in the univariate statistical tests only significant differences were found in 
the hip frontal plane angle and knee sagittal angle. A similar pattern is seen in the SLMS kinematic pa-
rameters: the machine learner relies not only on the knee flexion-extension ROM but also on anterior 
trunk tilt, whereas no significant differences were found in trunk parameters in the univariate statistical 
approach. Interestingly, the machine learner’s relative contributions of cadence is high but the contribu-
tions of speed and stride length are not (which appeared to significantly differ between patients and 
healthy controls). In addition, clinicians’ SLMS movement quality rating appeared to be negligible com-
pared to all other features.  
These findings emphasize the difference between finding significant differences in variables and their 
contribution to discrimination in an artificial neural network. Garson’s method62 is a relatively simple way 
to get insight in importance of a feature for classification which allows for step-wise removal of non-
relevant features in an attempt to improve classification performance. In future research, the current 
algorithm could be improved in this manner.  
 
Since the data set used in the present was only small, not many training cases were present, which was 
expected to lower the classification accuracy. A method to enlarge the amount of training cases present-
ed to the machine learner during training is to increase the proportion of cases used as the training set. 
However, the data set appeared too small to show the expected trend. Classification accuracies of the 
minimal and maximal training set sizes were both significantly lower compared to the standard training 
set size and classification accuracy of the maximal training set was not significantly higher compared to 
that of the minimal training set. However, we expect that the expected trend would have been visible in 
a larger data set.  
 
Despite the small data set, the multivariate machine learning approach resulted in high classification 
accuracies, sensitivities and specificities. An important advantage of this method is that multimodal data 
can be handled due to the non-linear nature of the artificial neural network algorithm: both discrete sub-
ject characteristics and time series can be included and both continuous measures as well as nominal or 
ordinal measures can be included. Secondly, interpretation of the results is relatively simple. A third 
advantage is that in the future, a large set of input features can be defined automatically, followed by 
the automatic classification according to those features that discriminate13. Such a shotgun approach 
makes the process of feature selection for classification more objective although the definition of a 
threshold for selecting discriminating features still requires user intervention.  
On the other hand, this brings the risk that the machine learner becomes a black box. We support the 
recommendation of Kaptein et al. 13 to use this machine learning approach in combination with educated 
guesses, making theory-based decisions. Two other important disadvantages are that large databases to 
allow for sufficient subjects-to-classes ratio57 and measures-to-subjects ratio13, and computers with high 
computational power are required.  
 
The present study was designed as a first step in classifying physical function in patients with KOA and 
healthy controls using a machine learning approach. A binary classification was tested distinguishing 
between patients (assumed to have an impaired physical function) and healthy controls (assumed to 
have unimpaired physical function) based on conventional physical function measures and movement 
quality information. The next step would be to classify not according to KL-score (i.e. being patient or 
not) but in an undefined amount of groups with different physical function levels. This could be achieved 
by adopting an unsupervised learning approach. That doesn’t require a reference classification (i.e. su-
pervision) to train the machine learner with. This could assist in gaining new insights in the concept of 
physical function and its contributors. The final step would be to develop a machine learning algorithm 
that assists in screening, diagnosis and monitoring of patients with KOA and healthy controls.  
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5 Conclusions 

Our first aim was to highlight advantages and disadvantages of two conventional univariate and multi-
variate statistical approaches as well as a new, multivariate machine learning approach in evaluating 
differences in physical function between patients with KOA and healthy controls. The conventional uni-
variate approach of doing multiple independent t-tests between groups turned out to be an easy method 
with easy interpretation. An important disadvantage is that due to the univariate nature of the tests, 
covariance between variables is not taken into account. So, information could be redundant and the 
more t-tests are conducted, the lower the statistical power. Principal component analysis does take into 
account covariance between variables. Complex information can be gained by interpreting a low amount 
of outcome variables, but the interpretation of the results is time-consuming. The machine learning ap-
proach is able to handle multimodal data in one analysis due to the non-linear nature of the artificial 
neural network algorithm. Still, interpretation of the results is relatively simple. The approach offers the 
opportunity of more objective feature selection and extraction but I recommend to use the machine 
learning approach in combination with a priori knowledge. Major disadvantages are the need for good 
computers and large databases.  
Our second aim was to evaluate the classification performance of the new machine learning approach in 
classifying physical function in patients with KOA and healthy controls. Maximal classification accuracies 
(96.3%), sensitivities (100%) and specificities (96.3%) were achieved by an input feature set without 
gait and SLMS kinematics. Adding gait kinematic input features did not deteriorate performance signifi-
cantly, but adding SLMS did. This indicates that adding information on movement quality does not assist 
in classifying physical function in patients with KOA and healthy controls. However, the data presented 
here should be taken with caution since the validation of the algorithm was not sufficient yet. In future 
research, the algorithm should be improved so that classification only occurs based on discriminative 
features. In addition, this study was only a first step in classifying physical function in patients with KOA. 
In the future, the present study should be repeated with a larger database and an unsupervised learning 
approach to classify into more than 2 classes and without the need of a reference classification. Such an 
unsupervised learning approach allows for the design of a classification that classifies physical function in 
a not predefined, meaningful amount of classes representing different levels of physical function. This 
might give new insights in the concept of physical function and its contributors. On the long term, this 
could lead to a machine learning algorithm that helps in screening, diagnosis and monitoring of patients 
with KOA and healthy controls. 
 
  



RM research report  
 

 23/39 
 

6 Acknowledgements 

I want to thank prof. dr. ir. Jaap Harlaar and prof.dr. Andreas Daffertshofer for being my supervisors, dr. 
Eva Weidenhielm-Broström, Josefine Naili Eriksson (PhD) and Mikael Reimeringer for collecting the data 
and Sanna Aufwerber (PhD) and dr. Maura Daly Iversen for the help with organizing movement quality 
rating sessions. Of course I also want to thank the clinicians of the Karolinska Institutet and OrthoCenter 
Stockholm for their participation in the rating sessions.  
 
 
  



RM research report  
 

 24/39 
 

7 References 

1. Deluzio, K. J. & Astephen, J. L. Biomechanical features of gait waveform data associated with knee 
osteoarthritis. An application of principal component analysis. Gait Posture (2007).  

2. Frank M. Chang, MD, Jason T. Rhodes, MD, MS, Katherine M. Davies, BA, and James J. Carollo, PhD, P. 
Gait analysis influencs care of children with CP. http://lermagazine.com/article/gait-analysis-influences-
care-of-children-with-cp (2011).  

3. Deluzio, K. J., Wyss, U. P., Costigan, P. A., Sorbie, C. & Zee, B. Gait assessment in unicompartmental 
knee arthroplasty patients: Principal component modelling of gait waveforms and clinical status. Hum. 
Mov. Sci. (1999).  

4. Chau, T. A review of analytical techniques for gait data. Part 1: Fuzzy, statistical and fractal methods. 
Gait and Posture 13, 49-66 (2001).  

5. Schwartz, M. H. & Rozumalski, A. The gait deviation index: A new comprehensive index of gait 
pathology. Gait Posture 28, 351–357 (2008). 

6. Simon, S. R. Quantification of human motion: Gait analysis - Benefits and limitations to its application 
to clinical problems. J. Biomech. 37, 1869–1880 (2004). 

7. Chau, T. A review of analytical techniques for gait data. Part 2: neural network and wavelet methods. 
Gait Posture 13, 102–120 (2001). 

8. Stauffer, R. N., Chao, E. Y. & Györy, A. N. Biomechanical gait analysis of the diseased knee joint. Clin. 
Orthop. Relat. Res. 246–55 (1977).  

9. Andriacchi, T. P., Galante, J. O. & Fermier, R. W. The influence of total knee-replacement design on 
walking and stair-climbing. J. Bone Joint Surg. Am. 64, 1328–35 (1982). 

10. Schnitzer, T. J., Popovich, J. M., Andersson, G. B. & Andriacchi, T. P. Effect of piroxicam on gait in 
patients with osteoarthritis of the knee. Arthritis Rheum. 36, 1207–13 (1993). 

11. Carriero, A., Zavatsky, A., Stebbins, J., Theologis, T. & Shefelbine, S. J. Determination of gait patterns 
in children with spastic diplegic cerebral palsy using principal components. Gait Posture 29, 71–75 
(2008). 

12. Mezghani, N., Husse, S., Turcot K. & de Guise, J.A. Automatic Classification of Asymptomatic and 
Osteoarthritis Knee Gait Patterns Using Kinematic Data Features and the Nearest Neighbor Classifier. 
IEEE Trans. Biomed. Eng. 55, 1230–1232 (2008). 

13. Kaptein, R. G., Wezenberg D., IJmker, T., Houdijk, H., Beek, P.J., Lamoth, C.J. & Daffertshofer A.. 
Shotgun approaches to gait analysis: insights & limitations. J. Neuroeng. Rehabil. 11, 120 (2014). 

14. Winter, D.A. Systems approach to the biomechanical assessment of pathological gait. Klavora Mot. 
Learn. b-352. (1980). 

15. Chao, E. Y., Laughman, R. K., Schneider, E. & Stauffer, R. N. Normative data of knee joint motion and 
ground reaction forces in adult level walking. J. Biomech. 16, 219–33 (1983). 

16. Whittle, M. W. & Jefferson, R. J. Functional biomechanical assessment of the Oxford Meniscal Knee. J. 
Arthroplasty 4, 231–43 (1989). 

17. Daffertshofer, A., Lamoth, C. J. C., Meijer, O. G. & Beek, P. J. PCA in studying coordination and 
variability: A tutorial. Clin. Biomech. 19, 415–428 (2004). 

18. Lamoth, C. J. C., Daffertshofer,  a., Huys, R. & Beek, P. J. Steady and transient coordination structures 
of walking and running. Hum. Mov. Sci. 28, 371–386 (2009). 

19. Lafuente, R., Belda, J. M., Sánchez-Lacuesta, J., Soler, C. & Prat, J. Design and test of neural networks 
and statistical classifiers in computer-aided movement analysis: a case study on gait analysis. Clin. 
Biomech. (Bristol, Avon) 13, 216–229 (1998). 

20. Dieppe, P. A. & Lohmander, L. S. Pathogenesis and management of pain in osteoarthritis. Lancet 365, 
965–73 (2005). 

21. Andriacchi, T. P., Favre, J., Erhart-Hledik, J. C. & Chu, C. R. A Systems View of Risk Factors for Knee 
Osteoarthritis Reveals Insights into the Pathogenesis of the Disease. Ann. Biomed. Eng. 43, 376–387 
(2014). 

22. Kotti, M., Duffell, L. D., Faisal, A. A. & McGregor, A. H. The Complexity of Human Walking: A Knee 
Osteoarthritis Study. PLoS One 9, e107325 (2014). 

23. Bijlsma, J. W., Berenbaum, F. & Lafeber, F. P. Osteoarthritis: an update with relevance for clinical 
practice. Lancet 377, 2115–2126 (2011). 

24. Fibel, K. H. State-of-the-Art management of knee osteoarthritis. World J. Clin. Cases 3(2), 89-101 
(2015).  

25. Adatia, A., Rainsford, K. D. & Kean, W. F. Osteoarthritis of the knee and hip. Part I: Aetiology and 
pathogenesis as a basis for pharmacotherapy. Journal of Pharmacy and Pharmacology 64, 617-615 
(2012).  

26. Altman, R. D. Classification of disease: Osteoarthritis. Semin. Arthritis Rheum. 20, 40–47 (1991). 
27. Broström, E. W., Esbjörnsson, A. C., Von Heideken, J. & Iversen, M. D. Gait deviations in individuals 

with inflammatory joint diseases and osteoarthritis and the usage of three-dimensional gait analysis. 
Best Pract. Res. Clin. Rheumatol. 26, 409–422 (2012). 

28. Maly, M. R., Costigan, P. A. & Olney, S. J. Determinants of Self-Report Outcome Measures in People 
With Knee Osteoarthritis. Arch. Phys. Med. Rehabil. 87, 96–104 (2006). 

29. Alghadir, A., Anwer, S. & Brismée, J.-M. The reliability and minimal detectable change of Timed Up and 
Go test in individuals with grade 1 – 3 knee osteoarthritis. BMC Musculoskelet. Disord. 16, 174 (2015). 

30. Terwee, C. B., Mokkink, L.B., Steultjens, M.P.M. & Dekker, J.. Self-reported physical functioning was 
more influenced by pain than performance-based physical functioning in knee-osteoarthritis patients. J. 
Clin. Epidemiol. 45, 890-892 (2006).  

31. Terwee, C. B., Coopmans, C., Peter, W., Roorda, L.D., Poolman R.W., Scholtes, V.A.B., Harlaar J. & de 



RM research report  
 

 25/39 
 

Vet, H.C.W. Development and Validation of the Computer-Administered Animated Activity Questionnaire 
to Measure Physical Functioning of Patients With Hip or Knee Osteoarthritis. Phys. Ther. 94, 251–261 
(2014). 

32. Dobson, F., Hinman, R.S., Hall. M., Terwee, C.B., Roos, E.M. & Bennell, K.L.. Measurement properties 
of performance-based measures to assess physical function in hip and knee osteoarthritis: A systematic 
review. Osteoarthr. Cartil. 20, 1548-1562 (2012).  

33. Peter, W. F., Loos M, de Vet HC, Boers M, Harlaar J, Roorda LD, Poolman RW, Scholtes VA, Boogaard J, 
Buitelaar H, Steultjens M, Roos EM, Guillemin F, Rat AC, Benedetti MG, Escobar A, Østerås N & Terwee 
CB. Development and Preliminary Testing of a Computerized Animated Activity Questionnaire in 
Patients With Hip and Knee Osteoarthritis. Arthritis Care Res. (Hoboken). 67, 32–39 (2015). 

34. Roos, E. M., Roos, H. P., Lohmander, L. S., Ekdahl, C. & Beynnon, B. D. Knee Injury and Osteoarthritis 
Outcome Score (KOOS)--development of a self-administered outcome measure. J. Orthop. Sports Phys. 
Ther. 28, 88–96 (1998). 

35. Bremander,  a. B., Dahl, L. L. & Roos, E. M. Validity and reliability of functional performance tests in 
meniscectomized patients with or without knee osteoarthritis. Scand. J. Med. Sci. Sport. 17, 120-127 
(2007). 

36. Stratford, P. W., Kennedy, D., Pagura, S. M. C. & Gollish, J. D. The relationship between self-report and 
performance-related measures: questioning the content validity of timed tests. Arthritis Rheum. 49, 
535–40 (2003). 

37. F. Dobson, Hinman, R.S., Roos, E.M., Abbott, J.H., Stratford, P., Davis, A.M., Buchbinder, R., Snyder-
Mackler, L., Henrotin, Y., Thumboo, J., Hansen, P. & Bennell, K.L. OARSI recommended performance-
based tests to assess physical function in people diagnosed with hip or knee osteoarthritis. Osteoarthr. 
Cartil. 21, 1042–1052 (2013). 

38. Stevens-Lapsley, J. E., Schenkman, M. L. & Dayton, M. R. Comparison of self-reported knee injury and 
osteoarthritis outcome score to performance measures in patients after total knee arthroplasty. PM R 3, 
541–9; 549 (2011). 

39. Gandhi, R., Tsvetkov, D., Davey, J. R., Syed, K. A. & Mahomed, N. N. Relationship between self-
reported and performance-based tests in a hip and knee joint replacement population. Clin. Rheumatol. 
28, 253–7 (2009). 

40. Roos, E. M., Bremander, A. B., Englund, M. & Lohmander, L. S. Change in self-reported outcomes and 
objective physical function over 7 years in middle-aged subjects with or at high risk of knee 
osteoarthritis. 67, 505-510 (2008). 

41. Chmielewski, T. L. Hodges, J.M., Horodyski, M., Bishop, M.D., Conrad, B.P. & Tillman, S.M. 
Investigation of clinician agreement in evaluating movement quality during unilateral lower extremity 
functional tasks: a comparison of 2 rating methods. J. Orthop. Sports Phys. Ther. 37, 122–9 (2007). 

42. Mezghani, N., Turcot K. & de Guise, J.A. Asymptomatic and knee osteoarthritis automatic gait pattern 
analysis using a wavelet representation of kinetic data and the nearest neighbor classifier. Age 63, 66–
67 (2007). 

43. Kirkwood, R. N., Resende, R.A., Magalhaes, C.M.B., Gomes, H.A., Mingoti, S.A. & Sampaio, R.F.  
Application of principal component analysis on gait kinematics in elderly women with knee 
osteoarthritis. Rev Bras Fisioter 15, 52–8 (2011). 

44. Schmitt, D., Vap, A., Queen, R. M. & Krzyzewski, M. W. Effect of end-stage hip, knee, and ankle 
osteoarthritis on walking mechanics. Gait Posture (2015).  

45. de Groot, I. B., Favejee, M. M., Reijman, M., Verhaar, J. A. N. & Terwee, C. B. The Dutch version of the 
Knee Injury and Osteoarthritis Outcome Score: a validation study. 6, 16 Health Qual. Life Outcomes 
(2008).  

46. EuroQol. A new facility for the measurement of health-related quality of life. Health Policy 16, 199–208 
(1990). 

47. Ageberg, E. Bennell, K.L., Hunt, M.A., Simic, M., Roos, E.M & Creaby, M.W. Validity and inter-rater 
reliability of medio-lateral knee motion observed during a single-limb mini squat. BMC Musculoskelet. 
Disord. 11, 265 (2010). 

48. Vicon. Plug-In Gait. (2002). 
49. Weeks, B. K., Carty, C. P. & Horan, S. A. Kinematic predictors of single-leg squat performance: a 

comparison of experienced physiotherapists and student physiotherapists. BMC Musculoskelet. Disord. 
13, 207 (2012). 

50. Kaptein R, D. A. UPMOVE: a Matlab Toolbox for the Analysis and Classification of Human Gait. 
[http://www.upmove.org] 

51. Field A. Discovering statistics using SPSS. (SAGE, 2009). 
52. Astephen, J. L. & Deluzio, K. J. A multivariate gait data analysis technique: application to knee 

osteoarthritis. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in 
medicine (2004).  

53. Joliffe, I. in Principal Component Analysis (2nd edition) 11–114 (2002). 
54. Peres-Neto, P. R., Jackson, D. A. & Somers, K. . Giving meaningful interpretation to ordination axes: 

assessing loading signficance in principal component analysis. Ecology 84, 2347–2363 (2003). 
55. Welch, P. The use of Fast Fourier Transform for the estimation of power spectra: A method based on 

time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. AU-15, 70–73 
(1967). 

56. Arsham H. Kuiper’s P-value as a measuring tool and decision procedure for the goodness-of-fit test. J. 
Appl. Stat. 15, 131–137 (1988). 

57. Vincent, W. J. Statistics in kinesiology. (Human Kinetics, 2005). 
58. Sahiner, B., Chan, H.-P. & Hadjiiski, L. Classifier performance prediction for computer-aided diagnosis 



RM research report  
 

 26/39 
 

using a limited dataset. Med. Phys. 35, 1559–1570 (2008). 
59. Kohonen, T. in The Handbook of Brain Theory and Neural Networks 631–635 (2003). 
60. WEKA classification algorithms. http://wekaclassalgos.sourceforge.net/. Last accessed 26-10-2016. 
61. Demšar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7, 1–30 

(2006). 
62. Garson, G. D. Interpreting neural-network connection weights. AI Expert 6, 47–51 (1991). 
63. Goh, A. T. C. Back-propagation neural networks for modeling complex systems. Artif. Intell. Eng. 9, 

143–151 (1995). 
64. Astephen, J. L., Deluzio, K. J., Caldwell, G. E. & Dunbar, M. J. Biomechanical changes at the hip, knee, 

and ankle joints during gait are associated with knee osteoarthritis severity. J. Orthop. Res. 26, 332–
341 (2008). 

65. Kaufman, K. R., Hughes, C., Morrey, B. F., Morrey, M. & An, K. N. Gait characteristics of patients with 
knee osteoarthritis. J. Biomech. 34, 907–915 (2001). 

66. Weidow, J., Tranberg, R., Saari, T. & Kärrholm, J. Hip and knee joint rotations differ between patients 
with medial and lateral knee osteoarthritis: gait analysis of 30 patients and 15 controls. J. Orthop. Res. 
24, 1890–9 (2006). 

67. Gök, H., Ergin, S. & Yavuzer, G. Kinetic and kinematic characteristics of gait in patients with medial 
knee arthrosis. Acta Orthop. Scand. 73, 647–52 (2002). 

68. Hunt, M. A., Wrigley, T. V., Hinman, R. S. & Bennell, K. L. Individuals with severe knee osteoarthritis 
(OA) exhibit altered proximal walking mechanics compared with individuals with less severe OA and 
those without knee pain. Arthritis Care Res. (Hoboken). 62, 1426–1432 (2010). 

69. Mills, K., Hunt, M. A. & Ferber, R. Biomechanical deviations during level walking associated with knee 
osteoarthritis: A systematic review and meta-analysis. Arthritis Care Res. (2013).  

70. Huang, S.-C. et al. Effects of severity of degeneration on gait patterns in patients with medial knee 
osteoarthritis. Med. Eng. Phys. 30, 997–1003 (2008). 

71. Baliunas, A. J. et al. Increased knee joint loads during walking are present in subjects with knee 
osteoarthritis. Osteoarthritis Cartilage 10, 573–9 (2002). 

72. Al-Zahrani KS, B. A. A study of the gait characteristics of patients with chronic osteoarthritis of the 
knee. Disabil Rehabil. Mar 20;24(5):275-80. (2002).  

73. Naili, J. E., Gutierrez-Farewik, E. M., Reimeringer, M., Esbjornsson, A.-C. & Brostrom, E. W. 3D 
evaluation of the single limb mini squat test in patients with knee osteoarthritis . Gait Posture  
Conference, S6–S7 (2013). 

74. Bejek, Z., Paróczai, R., Illyés, A. & Kiss, R. M. The influence of walking speed on gait parameters in 
healthy people and in patients with osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 14, 612–22 
(2006). 

 
  



RM research report  
 

 27/39 
 

Appendix A. 3D movement analysis data 

Table A1. Angle and CoM time series used in kinematic analyses 
Segment/joint Time series Gait  SLMS 
Trunk Posterior tilt X X 
 Contralateral tilt X X 
 Internal rotation X X 
Pelvis Anterior tilt X X 
 Ipsilateral upward list X X 
 Internal rotation X X 
Hip & CL hip Flexion X X 
 Adduction X X 
 Internal rotation X X 
Knee & CL knee Flexion X X 
 Varus X X 
 Internal rotation X X 
Ankle & CL ankle Dorsiflexion X X 
 Internal rotation X X 
 Foot progression angle: toe in X  
CoM position relative to 
toe marker of squat leg 

Mediolateral CoM position   X 

 Backward-forward CoM position   X 
 Upward-downward CoM position   X 
Number of time series  24 25 
 
Table A2. Educated guess for gait and SLMS spatiotemporal characteristics and kinematic pa-
rameters discriminating between patients and controls 
Gait spatiotemporal characteristics Gait kinematic parameters 
Speed (m/s) <1,27,64–

67 
Peak trunk ipsilateral lean during GC (⁰) >68 

Cadence (steps/min) <67,69 Peak trunk contralateral lean during GC (⁰) >68 

Stride time (s) >64,67 
Peak pelvic anterior tilt during GC, at start 
and end SS  (⁰) >70 

Stride length (m) <64,66,67,

71 
Peak pelvic drop during swing (⁰) <70 

  Peak hip flexion during stance  (⁰) >44 

SLMS spatiotemporal characteristics Peak hip extension during stance (⁰) <44,72 
Decreased number of repetitions in the 
affected leg (PB test score) <73 Hip flexion-extension ROM during GC (⁰) <64 

Limb symmetry index 
(= repetitions affected leg / healthy leg) <73 Peak hip adduction during stance (⁰) <68,70 

Test duration (s) < Hip adduction at the start of SS (⁰) <70 

  Peak knee flexion during GC (⁰) <64,65,72 
 

SLMS kinematic parameters Knee flexion at the start of SS (⁰) <70 

SLMS Peak & mean anterior trunk tilt (⁰) >73 Peak knee flexion during LR  (⁰) <70,72 

SLMS Knee flexion-extension ROM (⁰) <73 Peak knee extension during GC (⁰) <74 

  Peak knee extension during stance (⁰) <44 

  Knee flexion-extension ROM during GC (⁰) <65,74 

  Peak ankle plantarflexion during stance (⁰) <44 

  Peak ankle dorsiflexion during swing (⁰) <72 

  Ankle plantar-dorsiflexion ROM over GC (⁰) <64 
> Patients’ values are increased relative to controls’ values. < Patients’ values are reduced relative to controls’ values. All parame-
ters refer to the affected side.  GC = gait cycle; ROM = range of motion; SS = single stance; LR = loading response 
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Appendix B. Machine learning input features 

Table B1. Input feature subsets used in the machine learning approach 
Subject charac-
teristics 

Gait  SLMS  

Basic personal 
information  

Spatiotemporal characteristics (Table 2) Spatiotemporal characteris-
tics (Table 2) 

Sex Speed LimbSymmIndex 
Age Cadence TestDuration 
Weight Stride time  
Height Stridel ength  
BMI   
 Discrete kinematic parameters (Table 2) Discrete kinematic parame-

ters (Table 2) 
KL (only included 
if stated explicitly) 

Peak trunk ipsilateral and contralateral lean during 
GC (2) 

Peak trunk anterior tilt and 
mean trunk anterior tilt (2) 

 Peak pelvic anterior tilt during GC, at start and end 
SS, peak pelvic drop during swing (4) 

Knee flexion-extension ROM 
(1) 

PROMs Peak hip flexion and extension during stance, hip 
flexion-extension ROM during GC, peak hip adduc-
tion during stance and hip adduction at start of SS 
(5) 

 

KOOS 5scales Peak knee flexion during GC, at start SS, during LR, 
peak knee extension during GC and stance, knee 
flexion-extension ROM during GC (6) 

 

EQ5D score+VAS Peak ankle plantarflexion during stance, peak ankle 
dorsiflexion during swing, ankle plantar-dorsiflexion 
ROM over GC (3) 

 

   
PB test score Kinematics from PCAGait Kinematics from PCASLMS 

ClinRating Time projections (ξ) on selected PCs  Time projections (ξ) on se-
lected PCs  

 Variances of the time projections of the selected 
PCs (𝜎𝜉2) 

Variances of the time projec-
tions of the selected PCs (𝜎𝜉2) 
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Appendix C. Results of univariate statistical approach 

Table C1. Subject characteristics, PROM scores, PB test score and clinicians’ ratings 

 Patients (N=31) Controls 
(N=24) 

  

 Mean (SE) Mean (SE) p r 
Basic personal information     

 Gender (number of males/females) 20x F; 11x M 16x F; 8x M 0.87 -0.02 

 Age (years) 66.0 (1.3) 65.2 (1.9) 0.70 0.05 

 Height (m) a 1.7 [0.2] 1.7 [0.1] 0.48 -0.10 

 Weight (kg) 85.4 (2.2) 72.7 (2.5) p < 0.05* 0.46 

 BMI (kg/m2) 29.9 (0.7) 24.9 (0.6) p < 0.05* 0.56 

 KL score (scale 1-4, 0 indicates no KL 
score) 

2x 3a; 5x 3b  
9x 4a; 4x 4b 

24x 0 p < 0.05* -0.90 

     
PROM scores     

KOOSpain (scale 0-100) a 44.4 [19.4] 100.0 [5.6] p < 0.05* -0.86 
KOOSsympt (scale 0-100) a 35.7 [38.4] 96.4 [10.7] p < 0.05* -0.84 
KOOSadl (scale 0-100) a 55.1 [19.5] 100.0 [6.6] p < 0.05* -0.86 

KOOSsport (scale 0-100) a 10.0 [28.8] 100.0 [22.5] p < 0.05* -0.84 

KOOSqol (scale 0-100) a 31.3 [17.2] 100.0 [18.8] p < 0.05* -0.86 

 EQ5Dscore (scale -0.594 – 1) a 0.7 [0.1] 1.0 [0.2] p < 0.05* -0.85 
 EQ5Dvasb (scale 0-100) a 71.5 [32.5] 89.5 [17.3] p < 0.05* -0.54 
     
PBtest (amount of knee bendings in 
30s) 

13.9 (1.4) 28.7 (2.1) p < 0.05* 0.64 

MeanCLINratingc  (transformed) 
(scale 1-4) a 3.0 [1.0] 2.0 [0.0] p < 0.05* -0.67 

a The non-parametric counterpart of the independent t-test (Mann-Whitney U test) is used. Instead of mean (SE), median [IQR] 
is reported. 
b indicates four missing values for patients, resulting in Npatients = 27 and Ncontrols = 24. 
c indicates one missing value for controls, resulting in Npatients = 31 and Ncontrols  = 23. 
* indicates significance after Bonferroni correction: p < (0.05/amount of tests), with total amount of tests = 44. 
All scales are presented from minimal (affected) to optimal (healthy) score. 
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Table C2. Gait and SLMS spatiotemporal characteristics and kinematic parameters 

 Patients  
(N=31) 

Controls (N=24)   

 Mean (SE) Mean (SE) p r 
Gait spatiotemporal characteristics     

Speed (m/s) 1.10 (0.03) 1.32 (0.04) p < 0.05* 0.52 

Cadence (steps/min) 111.04 (1.30) 117.74 (2.12) p < 0.05 0.36 

Stride time (s) a 1.07 [0.09] 1.01 [0.11] p < 0.05 -0.39 

Stride length (m) 1.19 (0.03) 1.34 (0.02) p < 0.05* 0.49 

     

Gait kinematics (affected side)     

Peak trunk ipsilateral lean (⁰) 2.72 (0.40) 2.11 (0.44) 0.31 0.14 

Peak trunk contralateral lean (⁰) 1.93 (0.25) 1.66 (0.33) 0.50 0.09 

Peak pelvic anterior tilt during GC (⁰) 12.07 (0.70) 12.54 (0.85) 0.67 0.06 

Pelvic anterior tilt at start SS (⁰) 10.05 (0.69) 10.61 (0.90) 0.62 0.07 

Pelvic anterior tilt at end SS (⁰)a 10.96 [7.40] 11.44 [5.27] 0.91 -0.02 

Peak pelvic drop during swing (⁰) 3.17 (0.35) 4.06 (0.41) 0.10 0.22 

Peak hip flexion during stance  (⁰) 30.90 (1.19) 33.15 (1.02) 0.16 0.19 

Peak hip extension during stance (⁰) 9.96 (0.95) 11.28 (1.35) 0.41 0.11 

Hip flexion-extension ROM during GC (⁰) 41.74 (0.73) 45.04 (1.04) p < 0.05 0.34 

Peak hip adduction during stance (⁰) 0.10 (1.16) 4.41 (0.73) p < 0.05* 0.37 

Hip adduction at the start of SS (⁰) -1.52 (1.15) 3.76 (0.80) p < 0.05 0.44 

Peak knee flexion during GC (⁰) a 49.20 [9.16] 54.02 [7.79] p < 0.05 -0.36 

Knee flexion at the start of SS (⁰) 4.64 (1.22) 2.68 (0.84) 0.19 0.18 

Peak knee flexion during LR  (⁰)  12.45 (1.49) 15.92 (0.97) 0.23 -0.16 

Peak knee extension during GC (⁰) -1.65 (1.19) 3.51 (0.86) p < 0.05* 0.44 

Peak knee extension during stance (⁰) -1.91 (1.20) 2.86 (0.95) p < 0.05 0.40 

Knee flexion-extension ROM during 
GC (⁰) 

47.88 (1.17) 57.97 (1.05) p < 0.05* 0.65 

Peak ankle plantarflexion during stance 
(⁰) 

6.34 (0.85) 9.77 (0.73) p < 0.05 0.38 

Peak ankle dorsiflexion during swing (⁰) 6.23 (0.56) 5.19 (0.34) 0.12 0.23 

Ankle plantar-dorsiflexion ROM over GC 
(⁰) 

24.80 (0.99) 24.85 (1.02) 0.97 0.01 

     

SLMS spatiotemporal characteristics     

LimbSymmIndex (affected / healthy leg 
repetition ratio73) a 0.7 [0.5] 1.0 [0.1] p < 0.05* -0.62 

TestDuration (s) a 30.0 [0.0] 30.0 [0.0] 0.07 -0.24 

     

SLMS kinematics     

SLMS Peak anterior trunk tilt (⁰) 19.61 (1.91) 9.46 (1.72) p < 0.05 0.38 

SLMS Mean anterior trunk tilt (⁰) 10.72 (1.46) 4.44 (1.48) p < 0.05 0.38 

SLMS Knee flexion-extension ROM (⁰) 33.20 (1.52) 54.01 (1.78) p < 0.05* 0.77 
a The non-parametric counterpart of the independent t-test (Mann-Whitney U test) is used. Instead of mean (SE), median [IQR] 
is reported. 
b indicates four missing values for patients, resulting in Npatients = 27 and Ncontrols = 24. 
c indicates one missing value for controls, resulting in Npatients = 31 and Ncontrols  = 23. 
* indicates significance after Bonferroni correction: p < (0.05/amount of tests), with amount of tests = 44. 
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Appendix D. PCAGait 

Table D1. Percentage of the 
variance explained by the ei-
genvalues of the first five prin-
cipal components for gait and 
additional eigenvalues of sig-
nificantly different PCs 
Eigenvalue λ PCAGait (%) 
λ1 38.82* 
λ2 26.60* 
λ3 18.47* 
λ4 3.91 
λ5 3.08 
∑λ1-5  90.88 
  
∑λallsignPCs 83.89 
* indicates significant difference in vari-
ance of cycle time projection on each PC 
between patients and controls 
 
Table D3. Average relative 
phase (⁰) between PCs of gait 
with similar frequencies. 
Gait 

 f (/GC) Mean  SD 

PC1-
PC2 

1 92.6 8.9 
 

PC3- 
PC4 

2 -91.4  11.7 
 

Relative phases are calculated as the 
phase of the PC with the highest number 
minus the phase of the PC with the lowest 
number.  
* indicates a significant difference in 
average relative phase between patients 
and controls (p < 0.01). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure D1. Power spectral densities  
for time projections on PC1-5 in PCAGait. 
 
 
 
  

Table D2. Significant differences in variance of gait cy-
cle time projection on each PCgait between patients and 
controls 
 𝝈𝝃

𝟐    
 Patients Controls   
PC mean (SE) mean (SE) p r 
1 472.9 (17.01) 566.7 (24.03) p < 0.05* 0.39 
2 321.9 (12.36) 391.8 (14.24) p < 0.05* 0.42 
3 203.8 (7.83) 303.9 (12.75) p < 0.05* 0.67 
4 44.6 (3.26) 61.9 (4.80) p < 0.05 0.37 
5a 33.9 [21.2] 44.3 [14.1] 0.052 0.42 
7 14.6 (1.05) 20.8 (2.25) p < 0.05 0.40 
11a 6.9 [6.8] 5.3 [4.2] p < 0.05 0.19 
a  The non-parametric counterpart of the independent t-test (Mann-Whitney 
U test) is used. Instead of mean (SE), median [IQR] is reported. 
* indicates significance after Bonferroni correction: p < (0.05/amount of 
tests), with amount of tests = 24. 
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Figure D2. PCAGait: Eigenvector coefficients of principal component 1-5. Eigenvector coefficients quantify the contribu-
tion of each original time series to that principal component.  Stars indicate significance according to the broken stick test. 
Angle abbreviations on the horizontal axis: T = trunk, P = pelvis, H = hip, K = knee, A = ankle, cl = contralateral, anttilt = 
anterior tilt, ip up = ipsilateral up, CLlist = contralateral list, introt = internal rotation, flex = flexion, var = varus, dflex = 
dorsiflexion, fprog = foot progression. 
 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Eigenvector coefficients gait PCnr1
T 

an
tti

lt
T 

C
Ll

is
t

T 
in

tro
t

P 
an

tti
lt

P 
lis

t i
pu

p
P 

in
tro

t
H

 fl
ex

H
 a

dd
H

 in
tro

t
K 

fle
x

K 
va

r
K 

in
tro

t
A 

df
le

x
A 

in
tro

t
A 

fp
ro

g
cl

H
 fl

ex
cl

H
 a

dd
cl

H
 in

tro
t

cl
K 

fle
x

cl
K 

va
r

cl
K 

in
tro

t
cl

A 
df

le
x

cl
A 

in
tro

t
cl

A 
fp

ro
g

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Eigenvector coefficients gait PCnr2

T 
an

tti
lt

T 
C

Ll
is

t
T 

in
tro

t
P 

an
tti

lt
P 

lis
t i

pu
p

P 
in

tro
t

H
 fl

ex
H

 a
dd

H
 in

tro
t

K 
fle

x
K 

va
r

K 
in

tro
t

A 
df

le
x

A 
in

tro
t

A 
fp

ro
g

cl
H

 fl
ex

cl
H

 a
dd

cl
H

 in
tro

t
cl

K 
fle

x
cl

K 
va

r
cl

K 
in

tro
t

cl
A 

df
le

x
cl

A 
in

tro
t

cl
A 

fp
ro

g

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Eigenvector coefficients gait PCnr3

T 
an

tti
lt

T 
C

Ll
is

t
T 

in
tro

t
P 

an
tti

lt
P 

lis
t i

pu
p

P 
in

tro
t

H
 fl

ex
H

 a
dd

H
 in

tro
t

K 
fle

x
K 

va
r

K 
in

tro
t

A 
df

le
x

A 
in

tro
t

A 
fp

ro
g

cl
H

 fl
ex

cl
H

 a
dd

cl
H

 in
tro

t
cl

K 
fle

x
cl

K 
va

r
cl

K 
in

tro
t

cl
A 

df
le

x
cl

A 
in

tro
t

cl
A 

fp
ro

g

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Eigenvector coefficients gait PCnr4
T 

an
tti

lt
T 

C
Ll

is
t

T 
in

tro
t

P 
an

tti
lt

P 
lis

t i
pu

p
P 

in
tro

t
H

 fl
ex

H
 a

dd
H

 in
tro

t
K 

fle
x

K 
va

r
K 

in
tro

t
A 

df
le

x
A 

in
tro

t
A 

fp
ro

g
cl

H
 fl

ex
cl

H
 a

dd
cl

H
 in

tro
t

cl
K 

fle
x

cl
K 

va
r

cl
K 

in
tro

t
cl

A 
df

le
x

cl
A 

in
tro

t
cl

A 
fp

ro
g

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Eigenvector coefficients gait PCnr5

T 
an

tti
lt

T 
C

Ll
is

t
T 

in
tro

t
P 

an
tti

lt
P 

lis
t i

pu
p

P 
in

tro
t

H
 fl

ex
H

 a
dd

H
 in

tro
t

K 
fle

x
K 

va
r

K 
in

tro
t

A 
df

le
x

A 
in

tro
t

A 
fp

ro
g

cl
H

 fl
ex

cl
H

 a
dd

cl
H

 in
tro

t
cl

K 
fle

x
cl

K 
va

r
cl

K 
in

tro
t

cl
A 

df
le

x
cl

A 
in

tro
t

cl
A 

fp
ro

g



RM research report  
 

 33/39 
 

Appendix E. PCASLMS 

Table E1. Percentage of the 
variance explained by the ei-
genvalues of the first five prin-
cipal components for SLMS and 
additional eigenvalues of sig-
nificantly different PCs 
Eigenvalue 
λ 

PCASLMS (%) 

λ1 54.97 
λ2 21.99* 
λ3 8.51 
λ4 3.71 
λ5 3.48 
∑λ1-5  92.66  
  
λ19 0.11* 
∑λallsignPCs 22.10 
* indicates significant difference in vari-
ance of cycle time projection on each PC 
between patients and controls 
 
 
Table E3. Average relative phase between PCs of SLMS with similar frequencies. 

SLMS 

 PC1 PC2 PC3 PC4 PC5 PC19 

PC1  92.4 (28.3) -13.2 (71.9)a 44.6 (64.3) 25.2 (70.2) 17.0 (77.4) 
PC2   -16.7 (73.9) 11.0 (59.8)b 1.7 (77.6) -20.7 (69.4)c 

PC3    21.3 (73.7) -8.9 (79.2) -6.8 (78.8) 
PC4     23.5 (76.7) -28.6 (75.0) 
PC5      -28.6 (75.0) 
Relative phases are calculated as the phase of the PC with the highest number minus the phase of the PC with the lowest number. 
Reported values represent mean (SD). 
a A significant difference existed in average relative phase between patients (16.8 (63.3)) and controls (-51.5 (52.8)), p < 0.01. 
b A significant difference existed in average relative phase between patients (29.5 (54.5)) and controls(-12.8 (60.9)), p < 0.01. 
c A significant difference existed in average relative phase between patients (17.7 (70.6)) and controls (-69.9 (50.1)), p < 0.01. 

 

 
Figure E1. Power spectral densities for time  
projections on PC1-3 (left panel) and PC4,5  
and 19 in PCASLMS (right panel). 
  

Table E2. Significant differences in variance of SLMS test 
time projection on each PCSLMS between patients and controls 
 𝝈𝝃

𝟐   
 Patients Controls   
PC Median (IQR)a Median (IQR)a p r 
1 452.1 [567.8] 659.4 [772.0] 0.204 0.15 
2 72.3 [99.7] 530.8 [380.7] p < 0.05* 0.33 
3 66.0 [60.9] 60.1 [60.2] 0.872 0.05 
4 24.2 [33.7] 36.6 [31.7] 0.139 0.16 
5 43.4 [29.7] 33.5 [29.2] 0.06 0.18 
6 26.3 [27.6] 12.1 [13.7] p < 0.05 0.22 
8 4.8 [7.6] 8.4 [8.1] p < 0.05 0.19 
11 3.9 [3.7] 5.6 [3.5] p < 0.05 0.19 
12 3.3 [3.3] 5.1 [3.4] p < 0.05 0.21 
19 0.9 [0.5] 1.3 [1.4] p < 0.05* 0.24 
23 0.3 [0.5] 0.5 [0.5] p < 0.05 0.03 
a For SLMS data, all tests indicating a significant difference in 𝜎𝜉2 were non-
parametric. 
* indicates significance after Bonferroni correction: p < (0.05/amount of tests), 
with amount of tests = 25. 
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Figure E2. PCASLMS: Eigenvector coefficients of principal component 1-5 & 19. Eigenvector coefficients quantify the 
contribution of each original time series to that principal component.  Stars indicate significance according to the broken stick 
test. Angle abbreviations on the horizontal axis: T = trunk, P = pelvis, H = hip, K = knee, A = ankle, CoM = center of mass, cl 
= contralateral, anttilt = anterior tilt, ip up = ipsilateral up, CLlist = contralateral list, introt = internal rotation, flex = flexion, 
var = varus, dflex = dorsiflexion, fprog = foot progression, ML = mediolateral, FB = forward-backward, UD = upwards-
downwards. 
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Appendix F. Classification accuracies, specificities and sensitivities 

Table F1. Classification accuracies (%) of 8 different input feature sets and results of 
post-hoc tests after Friedman’s ANOVA 
 
Input feature set Median [IQR]a  Median [IQR]a p r 
With KL score       
Only KL  100.0 [0.0] All with KL 81.5 [18.5] p<0.05*  
All with KL 81.5 [18.5]     
Without KL score      
All without KL 81.5 [14.8] Only subchar 96.3 [3.7] p<0.05* -0.61 
  Only gait 81.5 [7.4] 0.125 -0.15 
  Only SLMS 74.1 [18.5] 0.054 -0.19 
  Subchar+gait 96.3 [3.7] p<0.05* -0.58 
  Subchar+SLMS 74.1 [11.1] p<0.05 -0.26 
  Gait+SLMS 81.5 [12.0] 0.935 -0.01 
Only subchar 96.3 [3.7] Only gait 81.5 [7.4] p<0.05* -0.62 
  Only SLMS 74.1 [18.5] p<0.05* -0.60 
  Subchar+gait 96.3 [3.7] p<0.05 -0.29 
  Subchar+SLMS 74.1 [11.1] p<0.05* -0.62 
  Gait+SLMS 81.5 [12.0] p<0.05* -0.60 
Only gait 81.5 [7.4] Only SLMS 74.1 [18.5] p<0.05* -0.40 
  Subchar+gait 96.3 [3.7] p<0.05* -0.60 
  Subchar+SLMS 74.1 [11.1] p<0.05* -0.43 
  Gait+SLMS 81.5 [12.0] 0.074 -0.18 
Only SLMS 74.1 [18.5] Subchar+gait 96.3 [3.7] p<0.05* -0.61 
  Subchar+SLMS 74.1 [11.1] 0.743 -0.03 
  Gait+SLMS 81.5 [12.0] p<0.05 -0.25 
Subchar+gait 96.3 [3.7] Subchar+SLMS 74.1 [11.1] p<0.05* -0.61 
  Gait+SLMS 81.5 [12.0] p<0.05* -0.60 
Subchar+SLMS 74.1 [11.1] Gait+SLMS 81.5 [12.0] p<0.05 -0.25 
Gait + SLMS 81.5 [12.0]     
a Since the Friedman ANOVA is a non-parametric test, medians and interquartile range are reported.   
* indicates significance after Bonferroni correction: p < (0.05/amount of tests), with amount of tests = 22. 
 
Table F2. Classification accuracies (%) of the full input feature set (without KL score) 
with minimal, standard and maximal training set sizes and results of post-hoc tests after 
Friedman’s ANOVA 
 
Training set Training set 

proportion 
 

Median 
[IQR]a 

Training set 
for compari-
son 

Median [IQR]a p r 

Standard  50% 81.5 [14.8] Minimal 63.2 [17.5] p < 0.05* -0.51 
   Maximal  50.0 [50.0] p < 0.05* -0.30 
Minimal  4.2% 63.2 [17.5] Maximal  50.0 [50.0] 0.809 -0.02 
Maximal  95.8% 50.0 [50.0]     
       
a Since the Friedman ANOVA is a non-parametric test, medians and interquartile range are reported.   
* indicates significance after Bonferroni correction: p < (0.05/amount of tests), with amount of tests = 3. 
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Table F3. Percentage of cases incorrectly classified as patients (sensitivities) for 7 dif-
ferent input feature sets and results of post-hoc tests after Friedman’s ANOVA 
Input feature set Median 

[IQR]a 
 Median [IQR]a p r 

With KL score      
All with KL 88.9 [14.8] All without KL 83.3 [8.3] .083 -0.17 
Without KL score      
All without KL 83.3 [8.3] Only subchar 100.0 [0.0] p<0.05* -0.59 
  Only gait 88.9 [7.4] p<0.05 -0.29 
  Only SLMS 81.5 [11.1] p<0.05 -0.21 
  Subchar+gait 96.3 [4.6] p<0.05* -0.52 
  Subchar+SLMS 79.6 [8.3] p<0.05 -0.25 
  Gait+SLMS 85.2 [11.1] 0.644 -0.05 
Only subchar 100.0 [0.0] Only gait 88.9 [7.4] p<0.05* -0.61 
  Only SLMS 81.5 [11.1] p<0.05* -0.61 
  Subchar+gait 96.3 [4.6] p<0.05* -0.51 
  Subchar+SLMS 79.6 [8.3] p<0.05* -0.62 
  Gait+SLMS 85.2 [11.1] p<0.05* -0.61 
Only gait 88.9 [7.4] Only SLMS 81.5 [11.1] p<0.05* -0.49 
  Subchar+gait 96.3 [4.6] p<0.05* -0.54 
  Subchar+SLMS 79.6 [8.3] p<0.05* -0.53 
  Gait+SLMS 85.2 [11.1] p<0.05* -0.37 
Only SLMS 81.5 [11.1] Subchar+gait 96.3 [4.6] p<0.05* -0.60 
  Subchar+SLMS 79.6 [8.3] 0.847 -0.02 
  Gait+SLMS 85.2 [11.1] p<0.05 -0.22 
Subchar+gait 96.3 [4.6] Subchar+SLMS 79.6 [8.3] p<0.05* -0.61 
  Gait+SLMS 85.2 [11.1] p<0.05* -0.59 
Subchar+SLMS 79.6 [8.3] Gait+SLMS 85.2 [11.1] p<0.05 -0.23 
Gait + SLMS 85.2 [11.1]     
a Since the Friedman ANOVA is a non-parametric test, medians and interquartile range are reported.   
* indicates significance after Bonferroni correction: p < (0.05/amount of tests), with amount of tests = 22. 
 
Table F4. Percentage of cases incorrectly classified as controls (specificities) for 7 dif-
ferent input feature sets and results of post-hoc tests after Friedman’s ANOVA 
Input feature set Median 

[IQR]a 
 Median [IQR]a p r 

With KL score       
All with KL 96.3 [11.1] All without KL 94.4 [11.1] 0.61 -0.05 
Without KL score      
All without KL 94.4 [11.1] Only subchar 96.3 [3.7] p < 0.05* -0.35 
  Only gait 92.6 [7.4] 0.19 -0.13 
  Only SLMS 92.6 [4.6] 0.72 -0.04 
  Subchar+gait 100.0 [0.0] p < 0.05* -0.45 
  Subchar+SLMS 92.6 [7.4] 0.49 -0.07 
  Gait+SLMS 96.3 [8.3] 0.48 -0.07 
Only subchar 96.3 [3.7] Only gait 92.6 [7.4] p < 0.05* -0.43 
  Only SLMS 92.6 [4.6] p < 0.05* -0.41 
  Subchar+gait 100.0 [0.0] p < 0.05 -0.29 
  Subchar+SLMS 92.6 [7.4] p < 0.05* -0.45 
  Gait+SLMS 96.3 [8.3] p < 0.05  -0.29 
Only gait 92.6 [7.4] Only SLMS 92.6 [4.6] 0.57 -0.06 
  Subchar+gait 100.0 [0.0] p < 0.05* -0.55 
  Subchar+SLMS 92.6 [7.4] 0.55 -0.06 
  Gait+SLMS 96.3 [8.3] 0.10 -0.17 
Only SLMS 92.6 [4.6] Subchar+gait 100.0 [0.0] p < 0.05* -0.50 
  Subchar+SLMS 92.6 [7.4] 1.00 0.00 
  Gait+SLMS 96.3 [8.3] 0.20 -0.13 
Subchar+gait 100.0 [0.0] Subchar+SLMS 92.6 [7.4] p < 0.05* -0.52 
  Gait+SLMS 96.3 [8.3] p < 0.05* -0.45 
Subchar+SLMS 92.6 [7.4] Gait+SLMS 96.3 [8.3] 0.20 -0.13 
Gait + SLMS 96.3 [8.3]     
a Since the Friedman ANOVA is a non-parametric test, medians and interquartile range are reported.   
* indicates significance after Bonferroni correction: p < (0.05/amount of tests), with amount of tests = 22. 
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Appendix G. Relative contribution of each input feature to classification 

Table G1. Relative contribution (%) of each input feature to classification us-
ing the maximal feature set (without KL score) 
 Mean (%) SD Largera  
Basic personal information    
 Gender 0.41 0.02 > 
 Age 0.36 0.02 > 
 Height 0.01 0.00  
 Weight 0.45 0.02 > 
 BMI 0.16 0.01 > 
    
PROM scores    
KOOSpain 0.33 0.02 > 
KOOSsympt 0.33 0.02 > 
KOOSadl 0.34 0.02 > 
KOOSsport 0.28 0.02 > 
KOOSqol 0.29 0.02 > 
 EQ5Dscore  0.00 0.00  
 EQ5Dvas 0.35 0.02 > 
    
PBtest  0.14 0.02 > 
MeanCLINrating 0.01 0.00  
    
Gait spatiotemporal characteristics    
Speed 0.01 0.00  
Cadence  0.62 0.03 > 
Stride time 0.01 0.00  
Stride length 0.01 0.00  
    
Gait kinematics (affected side)    
Peak trunk ipsilateral lean  0.01 0.00  
Peak trunk contralateral lean 0.01 0.00  
Peak pelvic anterior tilt during GC 0.07 0.01 > 
Pelvic anterior tilt at start SS 0.06 0.01 > 
Pelvic anterior tilt at end SS 0.06 0.01 > 
Peak pelvic drop during swing 0.02 0.00  
Peak hip flexion during stance 0.18 0.01 > 
Peak hip extension during stance 0.05 0.01  
Hip flexion-extension ROM during GC 0.24 0.01 > 
Peak hip adduction during stance 0.01 0.01  
Hip adduction at the start of SS 0.01 0.01  
Peak knee flexion during GC 0.26 0.02 > 
Knee flexion at the start of SS 0.02 0.01  
Peak knee flexion during LR  0.07 0.01 > 
Peak knee extension during GC 0.01 0.00  
Peak knee extension during stance 0.01 0.00  
Knee flexion-extension ROM during GC 0.28 0.02 > 
Peak ankle plantarflexion during stance 0.05 0.01  
Peak ankle dorsiflexion during swing 0.04 0.01  
Ankle plantar-dorsiflexion ROM over GC 0.14 0.01 > 
    
SLMS spatiotemporal characteristics    
LimbSymmIndex 0.00 0.00  
TestDuration 12.55 2.30 > 
    
SLMS kinematics    
SLMS Peak anterior trunk tilt 0.11 0.02 > 
SLMS Mean anterior trunk tilt 0.06 0.01 > 
SLMS Knee flexion-extension ROM 0.24 0.01 > 
    
PCAGait    
Gait PC1 xi 11.37 0.24 > 
Gait PC2 xi 9.01 0.11 > 
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Gait PC3 xi 7.35 0.10 > 
Gait PC4 xi 3.21 0.03  
Gait PC5 xi 2.61 0.03  
Gait PC7 xi 1.08 0.02  
Gait PC11 xi 0.76 0.01  
Gait PC1 var xi 2.95 0.90 > 
Gait PC2 var xi 1.97 0.73 > 
Gait PC3 var xi 1.46 0.69 > 
Gait PC4 var xi 0.32 0.37 > 
Gait PC5 var xi 0.28 0.50 > 
Gait PC7 var xi 0.13 0.36 > 
Gait PC11 var xi 0.06 0.30 > 
    
PCASLMS    
SLMS PC1 xi 13.33 2.36 > 
SLMS PC2xi 6.53 1.66 > 
SLMS PC3 xi 2.08 1.13  
SLMS PC4 xi 1.52 0.93  
SLMS PC5 xi 1.12 0.70  
SLMS PC6 xi 0.96 0.46  
SLMS PC8 xi 0.38 0.18  
SLMS PC11 xi 0.33 0.18  
SLMS PC12 xi 0.24 0.11  
SLMS PC19 xi 0.18 0.08  
SLMS PC23 xi 0.13 0.06  
SLMS PC1 var xi 6.41 1.22 > 
SLMS PC2var xi 2.47 0.42 > 
SLMS PC3 var xi 1.37 0.20 > 
SLMS PC4 var xi 0.65 0.13 > 
SLMS PC5 var xi 0.40 0.08 > 
SLMS PC6 var xi 0.27 0.06 > 
SLMS PC8 var xi 0.07 0.01 > 
SLMS PC11 var xi 0.03 0.00  
SLMS PC12 var xi 0.03 0.00  
SLMS PC19 var xi 0.01 0.00  
SLMS PC23 var xi 0.01 0.00  
    
Sum 100  100 
 
a Larger compared to the situation in which each data point equally contributes to classification (calculated 
as Ndatapoints*100/1863 = 0.054%*Ndatapoints). 
 

 




