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Abstract 
 
Parkinson’s disease (PD), is a neurodegenerative disorder characterized by a dopamine degeneration lead-
ing to primarily motor symptoms, such as akinesia, bradykinesia, rigidity and tremor. In PD, neural oscil-
lations change in the cortex. As shown by previous studies, there is an increase in alpha power, a decrease 
in beta power and a general slowing of oscillations in the course of the disease. Because the aforementioned 
studies are descriptive, the cause of oscillatory changes and the impact to neural functioning are not known 
yet. Therefore, models to describe the qualitative effects of these changes are needed to provide insight 
in whether slowing of oscillations influence the increase in alpha power and the decrease in beta power, or 
whether there is another causality. In this study, the aim is to gain more insight into oscillatory changes, 
whereby a model describing frequencies by means of a preferential rewiring method with a sparse non-
growing network of coupled phase oscillators is used as a starting point. A limitation to this model is the 
unimodal frequency distribution, and therefore, a bimodal frequency distribution will be implemented. The 
main question is: Does the description of resting-state MEG data in Parkinson’s disease require bimodality 

in the frequency distribution of its generating oscillator network? The simultaneous oscillatory changes in 
alpha and beta band in PD suggest a dependency of these frequencies. Therefore, a model including mul-
tiple frequencies is included to understand changes in cortical activities in this disease. A bimodal frequency 
distribution of the generating oscillator network is successfully applied to numerically simulated data of 
order parameters’ dynamics, which provides a proof of concept for the proposed method. By applying the 
same approach to resting-state MEG time-series of PD patients, it can be concluded that the bimodal 
frequency distribution does not capture the simultaneous changes in oscillatory activity as is seen in PD.         
 
Key words  
 
Brain oscillations; Neural synchronization; Kuramoto model; Bimodal distribution; Parkinson’s disease 
 
  



RM research report  
 

 2/43 
 

Table of Contents 
 

1 Introduction .......................................................................................................... 3 
1.1 Neural oscillations ................................................................................................ 3 
1.2 Neural synchronization .......................................................................................... 3 
1.3 Parkinson’s disease ............................................................................................... 4 
1.4 Brain imaging techniques ...................................................................................... 4 
1.5 The Kuramoto model ............................................................................................ 5 
1.6 Stochastic dynamics ............................................................................................. 5 
1.7 Previous research ................................................................................................. 6 
1.8 Thesis outline ....................................................................................................... 6 

2 Methods & Procedures .......................................................................................... 7 
2.1 Numerical analysis ................................................................................................ 8 

 2.1.1 Order parameters’ dynamics ................................................................................ 8 
 2.1.2 Analytics of the oscillators dynamics .................................................................... 13 

2.2 Empirical data ..................................................................................................... 14 

3 Results ................................................................................................................ 16 
3.1 Numerical analysis ............................................................................................... 16 

 3.1.1 Order parameters’ dynamics .............................................................................. 16 
 3.1.2 Oscillators’ dynamics ........................................................................................ 22 

3.2 Empirical data ..................................................................................................... 28 

4 Discussion ........................................................................................................... 31 
4.1 General conclusions ............................................................................................. 31 
4.2 Previous studies .................................................................................................. 31 
4.3 System identification approach .............................................................................. 31 
4.4 Model comparison ................................................................................................ 32 
4.5 Numerical simulations and empirical data ............................................................... 33 

5 Conclusions ......................................................................................................... 35 
 
Appendices  
 Appendix A - Oscillators' dynamics simulated too short………………………………………………….36 
 Appendix B - Comprehensive model comparison results ……………………………………………….41 

6 References .......................................................................................................... 43 
  
  
 
 
  



RM research report  
 

 3/43 
 

1 Introduction 

1.1 Neural oscillations 
Neural oscillations represent synchronous activity of single neurons or of many thousands of neurons. In 
single neurons, oscillatory activity can arise through oscillations in membrane potential or as rhythmic 
activity of action potentials (ACs). Thereby, voltage-gated channels are only selective for certain ion types 
and are activated at various potential ranges. This leads to the generation of activities including neural 
oscillation at multiple frequencies (Buzsáki, 2006). Activity of many thousands of neurons can lead to 
macroscopic oscillations, which arise from feedback connections between these neurons and can result in 
synchronization of their firing patterns. This activity is self-sustained and constitutes a robust pattern which 
is continuously active and generated from within. An input is required to start activity, although it does not 
prescribe the type of activity that is exhibited. The generation of oscillations is determined by the oscillatory 
phase and its assimilation. This process can be achieved either by an endogenous energy supply through 
local interactions between excitatory and inhibitory neurons, or by a random and unclear outside force 
(Fell & Axmacher, 2011; Sejnowski & Poggio, 2007). Oscillations provide the exchange of information 
between different brain areas. This interaction is performed best when two communicating assemblies 
have resonant frequencies, in which the neurons influence each other through excitatory and inhibitory 
synaptic connections. Hereby, the thalamus is seen as a large communication center where different brain 
areas are connected. Most connections formed by the thalamus are reciprocal and recurrent which form 
feedback loops that support oscillatory activity (Buzsáki, 2006; Fell & Axmacher, 2011; Olde Dubbelink et 
al., 2013; van Wijk, Beek, & Daffertshofer, 2012)  

1.2 Neural synchronization  
Synchronization of neurons leads to multiple, simultaneous synaptic inputs, resulting in rapid depolariza-
tions which increase the postsynaptic membrane potential to rise above the firing threshold. This process 
may support neural communication (Fell & Axmacher, 2011). 

Oscillators are synchronized when their phase difference equals zero. The difference between 
phase synchrony and phase asynchrony is displayed in figure 1. As stated by Buzsáki in his book Rhythms 
Of The Brain, the essence of neural synchrony can be defined as: ‘coupling through time by some invisible 
links’ (Buzsáki, 2006, p.150). In this definition, ‘time’ is essential. Synchrony is only achieved when two 
or many neurons fire within a certain (short) time interval. Only time does not satisfy functional synchro-
nization though. When the physical distance between neurons differ, the AC can be sent at the same time 
but because it has to cover a longer distance, the moment at which the AC is received can differ and 
therefore will be seen as asynchronous. It is therefore important for a neuron or neuronal pool to determine 
a discrete temporal window, composed of milliseconds to seconds, where an earlier input is preserved to 
be able to alter the response to a subsequent event. Synchronization can be reached when this results in 
multiple events being integrated over time, leading to the postsynaptic membrane potential to rise above 
the firing threshold. New ACs that occur outside this time window will have no impact on earlier ACs. 
Although the ACs have similar meaning, their concurrent occurrence is a coincidence, they are not causally 
related. A leaky (charged) neuron can integrate over a much shorter time window than when it is at rest 
(Buzsáki, 2006). 

 

 
For communication between networks of neurons (brain regions), displayed in figure 2, synchro-

nization is essential. Within a network of neurons, the time window for synchronization becomes longer 
and is determined by the readiness potential, which defines the activity leading up to voluntary muscle 
movement. Buzsáki and Fell & Axmacher state that there is a correlation between the time window in which 
spikes can occur and the frequency at which neural areas synchronize. A slower rhythm increases the 
chance of synchronization because more neurons within a bigger part of the brain can be recruited, and 
vice versa. Thereby, when there is a slower rhythm, the restrictions of axonal and synaptic delays decrease 
and the extent in space increases (Buzsáki, 2006; Fell & Axmacher, 2011).   

Figure 1: The difference between phase synchrony and asynchrony, visualizing phase assimilation and no phase 
assimilation respectively. (Figure adapted from Fell & Axmacher (2011)). 
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In large-scale oscillations, local and global synchroni-
zation refer to the difference between synchrony within a neu-
ral ensemble and synchrony between neural ensembles, re-
spectively. Global synchronization is caused by bidirectional 
coupling between all brain areas which create feedback loops 
and long-range connections (Buzsáki, 2006; Fell & Axmacher, 
2011; Schnitzler & Gross, 2005; Sejnowski & Poggio, 2007). 
Local information processing is represented by local field po-
tentials (LFPs), and entails fluctuations in membrane poten-
tials of local neuronal populations. The structural basis of local 
functional networks are short-range connections. These net-
works control an important aspect of brain functioning in reg-
ulating cognitive, behavioural and motor processes. The oscillations of locally synchronized populations 
can be classified into different frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-
30 Hz) and gamma (30-70 Hz). The functional association of these frequency bands, however, may depend 
on the brain region considered. Alpha/mu, beta and gamma oscillations, for example, show strong move-
ment-related modulations in large parts of the motor system. Successful motor functioning depends on 
the interactions and timing between multiple brain regions (Berendse & Stam, 2007; Engel & Fries, 2010; 
Olde Dubbelink, 2014; Schnitzler & Gross, 2005; van Wijk et al., 2012).  

As stated by Buzsáki, ‘brain “state” is a macroscopic variable, reflected by the mean field behaviour 
of the system, typically a characteristic oscillatory mode or a transition between different oscillatory modes’ 
(Buzsáki, 2006, p. 175). The resting-state of the brain, which entails the absence of a specific task, exhibits 
spatiotemporally structured patterns of ongoing activity, known as resting-state networks or resting-state 
functional connectivity. In these networks, when the neurons do not rise above threshold level, and when 
coupling is sufficient, all units oscillate leading to irregular dynamics exhibited by the network. The func-
tional connectivity pattern that thereby arises is largely reproducible despite its irregular nature. Abnor-
malities in this pattern indicate reduced quality of cerebral networks and health status of the brain. It is 
therefore considered as a biomarker in ageing and different pathologies (Deco, Buehlmann, Masquelier, & 
Hugues, 2011; Ferreira & Busatto, 2013; Sadaghiani, Hesselmann, Friston, & Kleinschmidt, 2010).    

1.3 Parkinson’s disease 
Changes in neural synchrony is a common symptom in many neurodegenerative diseases, including Par-
kinson’s disease (PD). This leads to changes in (local) oscillatory synchrony, involving multiple frequencies, 
and changes in functional connectivity between brain areas. PD is characterized by a dopamine degenera-
tion leading to multiple primarily motor symptoms, such as akinesia, bradykinesia, rigidity and tremor. The 
dopaminergic degeneration in the substantia nigra pars compacta leads to an increase in network connec-
tivity, which will increase the synaptic connections in the basal ganglia for their synapses are suppressed 
by dopamine. The increase of connections will lead to a more synchronized state of activity which prevents 
the execution of new movement (akinesia). This increased state of synchronization mostly occurs in the 
beta band, influencing cortico-cortical functional connectivity (Berendse & Stam, 2007; Rubchinsky, Park, 
Worth, 2013). Another common deficit in PD is a slowing of resting-state neural oscillations, which is 
already visible in early-stage PD patients, and entails increased power for low frequency bands and de-
creased power for higher frequency bands (Berendse & Stam, 2007; Olde Dubbelink et al., 2013). Using 
spectral analysis of magnetoencephalography (MEG) and electroencephalography (EEG) recordings, Olde 
Dubbelink et al. showed that slowing of oscillations is a continuous and disease-related process that starts 
early in PD, is progressive over time and is strongly related to a decline in cognitive function and, to a 
lesser extent, increasing motor impairments (Olde Dubbelink et al., 2013). Olde Dubbelink et al. also 
showed increased resting-state functional connectivity in the lower alpha band, which suggests a re-
mapping of cortical functional connectivity with disease progression.   

1.4 Brain imaging techniques 
Changes in both neural oscillations and functional networks in neurological pathologies, for example in PD, 
can be detected by functional brain imaging techniques such as MEG/EEG. In MEG, magnetic field changes 
which correspond to voltage changes, i.e. oscillations in the brain, can be detected outside the head. A 
spatial summation of LFPs is required for the oscillations to be strong enough to allow for recordings. The 
amplitude of the signal is composed of the degree of synchronization and strength of the LFPs, their spatial 
orientation and the extent of the involved neuronal population. MEG is especially useful in capturing the 

Figure 2: Phase synchronization be-
tween brain regions. Figure adapted from 
Fell & Axmacher (2011)  
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spatiotemporal dynamics of brain activity, which is applicable to the analysis of structural changes in pa-
thology (Berendse & Stam, 2007; Buzsáki, 2006; Olde Dubbelink et al., 2013; Schnitzler & Gross, 2005). 

As described above, brain activity can feature multiple frequencies and evolves over time. Frequency 
and time cannot be analyzed simultaneously though, because they are mathematically orthogonal. There-
fore, they are split up and measured separately by applying different methods. With a Fourier analysis, 
the signal measured by MEG/EEG is transformed from the time domain into the frequency domain. The 
signal is thereby represented in sine waves, which include the prevalent frequencies displayed in the power 
spectrum. The temporal domain is thereby ignored (Buzsáki, 2006). 

1.5 The Kuramoto model 
A mathematical method to model neural oscillations is the Kuramoto model of coupled phase oscillators. 
This model is symmetrical and idealized but can exhibit non-trivial collective dynamics. It analyzes syn-
chronization in neural networks, with respect to each phase oscillator in a network:  

𝑑𝜑𝑖(𝑡)

𝑑𝑡
=  𝜔𝑖 +

𝜅

𝑁
 ∑ sin(𝜑𝑗(𝑡) − 𝜑𝑖(𝑡))  ,   𝑖 = 1, … , 𝑁 𝑁

𝑗=1         (1) 

With N coupled phase oscillators 𝜑𝑖(𝑡), having natural frequencies 𝜔𝑖 with a given probability density 𝑔(𝜔) 
and coupling strength 𝜅 which is equal between all pairs of oscillators. 𝑔(𝜔) is usually symmetric and 
unimodal, such as a Lorentzian or Gaussian distribution with mean 𝜔0. The model specifies global (all-to-
all) coupling by means of a sinusoidal interaction function. When the distribution of phase differences is 
narrow, there is synchronization. With a widely distributed phase difference, coupling in the system is too 
weak to generate synchronization, i.e. the system is in the desynchronised state. A certain threshold of 
coupling (𝜅𝑐) needs to be exceeded before coherent behaviour of the system occurs, leading to partial or 
complete synchronization of the phases. This situation refers to a state where the phases are identical or 
differ by 𝜋, which leads to the elimination of the interaction function. Overall, a single attracting synchro-
nous and a single unstable antiphase are captured by the model.  
The state of the oscillator at time 𝑡 can be described by a continuous distribution function 𝑓(𝜔, 𝜑, 𝑡), within 
the limit 𝑁 →  ∞:  

∫ 𝑓(𝜔, 𝜑, 𝑡)𝑑𝜑 = 𝑔(𝜔)
2𝜋

0
.         (2) 

and 𝑔(𝜔) indicating frequency distributions of the oscillator which are not dependent on time (Acebrón, 
Bonilla, Vicente, Ritort, & Spigler, 2005; Breakspear, Heitmann, & Daffertshofer, 2010; Ott & Antonsen, 
2008).   
 Coherence in the system is measured by the complex order parameter:  

𝜌𝑒𝑖𝜓 =
1

𝑁
 ∑ 𝑒𝑖𝜑𝑗

𝑗 ,           (3) 

where 0 ≤ 𝜌(𝑡) ≤ 1 measures the coherence of the oscillators (phase uniformity), and 𝜓(𝑡) is the mean 
phase. 𝜌(𝑡) approaches zero when the phases are uniformly distributed, i.e. the system is desynchronised, 
and approach one when the phases converge, i.e. when all phases are synchronised (Acebrón et al., 2005; 
Breakspear et al., 2010; Ott & Antonsen, 2008).   

1.6 Stochastic dynamics 
A stochastic system can be characterized by the presence of uncorrelated random dynamic noise. In a 
neural network with both excitatory and inhibitory neurons, complex properties such as nonlinearity can 
be generated. Minor changes in the network can invoke enormous changes in activity. The variability of 
neuronal responses to every task is approximated as noise and is added internally or externally by or to 
brain activity. Noise can add up to an input whereby the membrane potential at first was below threshold 
to as yet cause an AP. This mechanism is referred to as stochastic resonance and provides improved 
communication between neurons or neuron assemblies (Buzsáki, 2006).  

In a stochastic system, random fluctuations typically influence the time evolution of the process. 
This implies that the future state of this system cannot be determined exactly but can only be estimated. 
This estimation contains the prediction of conditional probabilities for a future state to occur at a specific 
point in time and space. A probability distribution function thereby indicates the likelihood of the occurrence 
of specific states, and is applied in a system identification approach to identify the dynamics of a system 
(Daffertshofer, 2010).  

When a dynamical system undergoes a transition from for example asynchrony to synchrony, this 
transition corresponds to a bifurcation. These bifurcations qualify the behaviour of the system under vari-
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ous circumstances and are therefore informative to analyse the system. There are multiple forms of bifur-
cations which all belong to a certain type of behaviour exerted by the dynamical system at hand (Buzsáki, 
2006; Sejnowski & Poggio, 2007). The Kuramoto model of coupled oscillators is linearly stable when cou-
pling constant 𝜅 < 𝜅𝑐. The system switches from stability to instability from the desynchronized state when 
𝜅 > 𝜅𝑐. The synchronized state is non-linearly stable which coincides with a nonlinear stabilization of the 
synchronized state (Acebrón et al., 2005).    

1.7 Previous research 
Coopmans used the aforementioned system identification approach to estimate the order parameter dy-
namics in Kuramoto networks under impact of additive random fluctuations. She also modified the all-to-
all coupling by modifying the connectivity matrix between the phase oscillators. For this she used a pref-
erential rewiring method with a sparse non-growing network of coupled Kuramoto phase oscillators to 
model resting-state PD data. In this study, it was shown that this method proved to be applicable in 
modelling cortical synchronization (Coopmans, 2013). To further test this method, in the recent study, the 
same model will be applied to resting-state PD data. Also, another method to model synchronization in 
resting-state PD data will be applied, focusing on the spectral distribution of the data. In this method a 
bimodal frequency distribution, as described by Martens et al., will be implemented to increase the accuracy 
of the Kuramoto model. With a bimodal frequency distribution, changes of multiple frequencies can be 
captured and modelled. The Kuramoto model will fail here by only coping with a simple polynomial, which 
will not be sufficient in analysing multiple frequencies. The bimodal model as described by Martens et al., 
consists of a frequency distribution 𝑔(𝜔) with two peaks that is the sum of two identical unimodal distribu-
tions. With this model, instead of a critical coupling threshold,  a multi stable period arises including stand-
ing wave states (Martens et al., 2009). 

1.8 Thesis outline 
As described above, in PD, a change in resting-state oscillations occurs affecting the alpha and beta fre-
quency band. The application of a Kuramoto model with a bimodal frequency distribution for this data 
might hence be a more comprehensive approach when analysing the dynamics of PD resting-state activity 
than considering a unimodal frequency distribution as Coopmans did previously.  

The main question in the present study is: Does the description of resting-state MEG data in Parkin-
son’s disease require bimodality in the frequency distribution of its generating oscillator network? The focus 
thereby will be on differences in frequencies of brain dynamics between early and late stages of PD. The 
simultaneous changes in alpha and beta frequency band in Parkinson’s disease suggest an interdependency 

between these frequencies. Here, it is expected that multiple frequencies should be included to understand 
changes in cortical activities in PD.  

The current study consists of three consecutive parts, whereby both numerically simulated and em-
pirical data are analysed. The first part consists of numerical simulations of the order parameters’ dynamics 
in accordance with the article of Martens et al. (2009), to mimic their analysis. A bimodal version of the 
Kuramoto model, also proposed by Martens et al. (2009), is thereby set up and applied in all three parts 
of the current study. The second part consists of numerical simulations of the oscillators’ dynamics. The 
third part comprises the analysis of MEG resting-state data of PD patients, obtained from the VU medical 
centre. Subsequently, in all three parts, a bifurcation analysis will be applied to conduct the stability char-
acteristics of the dynamical systems, and to qualify the synchronization dynamics. To further define the 
dynamics, the aforementioned system identification approach, based on the estimation of Kramers-Moyal 
coefficients, as proposed by Daffertshofer (Daffertshofer, 2010) is applied. For this analysis, I hypothesize, 
as stated by Martens et al., the appearance of standing wave states, as a consequence of the bimodality 
of frequencies. This bimodality causes the system, when coupling strength is sufficient, to separate into 
two large groups of synchronized oscillators, representing standing wave states.   

According to Martens et al. the synchronization (order parameter) dynamics obey a polynomial form, 
hence, the simulated data will be fitted accordingly. Whether the proposed polynomials are actually the 
best fitting models to the data is then determined by the Aikaike Information Criterion (AIC) and the 
Bayesian Information Criterion (BIC).  

The overall goal of the current study is to relate the bimodal Kuramoto model to resting-state MEG 
PD data. Because in PD, multiple frequencies change, it is expected that the bimodal Kuramoto model will 
give better results in simultaneously analysing these frequencies in PD resting-state data in comparison to 
the unimodal model as described by Coopmans.   
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2 Methods & Procedures 

Figure 3 displays an overview of the different parts of this study, including the analyses and outcomes of 
the numerically simulated and empirical data.  
 

 
Figure 3: Flowchart comprising an overwiev over the method as applied to both numerical simulations and empirical data. 
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2.1 Numerical analysis 

2.1.1 Order parameters’ dynamics  
 
The Kuramoto model for N phase oscillators can be described as follows:   
𝑑𝜑𝑖(𝑡)

𝑑𝑡
=  𝜔𝑖 +

𝜅

𝑁
 ∑ sin(𝜑𝑗(𝑡) − 𝜑𝑖(𝑡))  ,   𝑖 = 1, … , 𝑁 𝑁

𝑗=1         (4) 

Describing N phase oscillators 𝜑𝑖(𝑡), with natural frequencies 𝜔𝑖 and coupling strength 𝜅 (Ott & Antonsen, 
2008). At a critical value, 𝜅𝑐, the system will spontaneously start to synchronise, eventually leading to 
coherent behaviour of the oscillators. In the thermodynamic limit of infinitely many oscillators, i.e. for 𝑁 →

∞, the onset of synchronization, occurs at a critical coupling which reads: 

𝜅𝑐 =  
2

𝜋𝑔(0)
.                    (5) 

Together with the Lorentzian or Cauchy density: 𝑔(𝜔) =  
∆

𝜋(∆2+ 𝜔2)
, this results in the exact value: 𝜅𝑐 = 2∆ 

(Strogatz, 2000). 
In this study, a bimodal frequency distribution of the natural fre-
quencies given by the sum of two Lorentzians, is applied according 
to: 

𝑔(𝜔) =  
∆

2𝜋
 (

1

(𝜔−𝜔0)2+∆2  + 
1

(𝜔+𝜔0)2+∆2),   (6)   
where ∆ represents the width parameter of each Lorentzian and 
±𝜔0 are their center frequencies (Martens et al. 2009), as repre-
sented in figure 4. 𝑔(𝜔) is symmetric about zero when the system 
is unimodal and the system is bimodal when 𝑔(𝜔) is symmetric 

around its mean frequency. The bimodality appears when 𝜔0 >  
∆

√3
, 

which assures sufficient distance between the two peaks. If this 
distance is not achieved, the distribution is unimodal and resem-
bles the conventional Kuramoto model. For the numerical simula-
tions, the range of 𝜔0-values was chosen to cover both a uni- and bimodal distribution (Martens et al., 
2009).  

To quantify synchronization, the complex order parameter of the dynamical system is defined by:  
𝑧(𝑡) =  ∫ ∫ 𝑒𝑖𝜑𝑓(𝜑, 𝜔, 𝑡)𝑑𝜑𝑑𝜔

2𝜋

0

∞

−∞
.                              (7)  

where 𝜑 is the phase of an oscillator at time 𝑡, and 𝑧 is the complex 

order parameter. |𝑧(𝑡)| (equal to 𝜌) represents the order param-
eter, referring to phase synchronization, which entails global syn-
chrony in a network (Daffertshofer, 2010). The influence of cou-
pling strength, including critical coupling value 𝜅𝑐, on the order 
parameter in the conventional Kuramoto model is displayed in fig-
ure 5. 

According to Martens et al., the evolution of the two sub-
order parameters in a bimodal distribution yield:  
�̇�1 =  −(∆1 + 𝑖𝜔01

)𝑧1 + 
𝜅

4
 [𝑧1 + 𝑧2 − (𝑧1

∗ + 𝑧2
∗)𝑧1

2    (8) 
�̇�2 =  −(∆2 − 𝑖𝜔02

)𝑧2 + 
𝜅

4
 [𝑧1 + 𝑧2 − (𝑧1

∗ + 𝑧2
∗)𝑧2

2   (9) 
Where, because of the symmetry assumption, ∆1=  ∆2, and 𝜔01

= 𝜔02
. To reduce the dimensionality of 

the system, polar coordinates are introduced (𝑧𝑗 = 𝜌𝑗𝑒
𝑖𝜙𝑗) to define the phase difference: 𝜓 =  𝜙2 − 𝜙1. 

This results in a three-dimensional system:  
�̇�1 =  −∆𝜌1 +

𝜅

4
(1 − 𝜌1

2)(𝜌1 + 𝜌2 cos𝜓)         (10) 
�̇�2 =  −∆𝜌2 +

𝜅

4
(1 − 𝜌2

2)(𝜌1 cos𝜓 +𝜌2)           (11) 

�̇� = 2𝜔0 − 
𝜅

4

𝜌1
2+𝜌2

2+2𝜌1
2𝜌2

2

𝜌1𝜌2
sin𝜓           (12) 

By subsequently satisfying the symmetry condition 𝜌1(𝑡) =  𝜌2(𝑡) ≡  𝜌(𝑡), the analysis reduces to the 
phase plane (Martens et al., 2009):  
�̇� =  

𝜅

4
𝜌(1 −

4∆

𝜅
− 𝜌2 + (1 − 𝜌2) cos𝜓)         (13) 

Figure 4: Bimodal frequency distribu-
tion (solid blue line) consisting of the 
sum of two Lorentzian distributions. The 
dotted line represents two independent 
Lorentzian distributions (figure adopted 
from Martens et al., (2009)) 

Figure 5: Theoretical behaviour of 
the order parameter and the influ-
ence of coupling strength on syn-
chronization (figure adopted from 
Strogatz, 2000) 
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�̇� = 2𝜔0 − 
𝜅

2
(1 + 𝜌2) sin𝜓           (14) 

Equation (13) and (14), representing the deterministic dynamics of the system, were applied to simulate 
time series of the order parameters to illustrate consistency with the paper by Martens et al. (2009). The 
analysis includes the addition of Gaussian noise to resemble a stochastic dynamical system. That is, the 
stochastic dynamics were simulated according to:  

�̇� =  
𝜅

4
𝜌 (1 −

4∆

𝜅
− 𝜌2 + (1 − 𝜌2) cos𝜓) + √2𝑄𝜌 Γ𝜌(𝑡)       (15) 

�̇� = 2𝜔0 − 
𝜅

2
(1 + 𝜌2) sin𝜓  + √2𝑄𝜓 Γ𝜓(𝑡)        (16) 

with Γ𝜌(𝑡) and Γ𝜓(𝑡) representing uncorrelated Gaussian white noise and 𝑄𝜌 and 𝑄𝜓 being small parame-
ters. Numerical integration is realized by a simple Euler Maruyama forward algorithm with fixed step size 
Δ𝑡 = 5 ∗ 10−4. To have a wide view on the behaviour of the dynamical system, the simulations of these 
equations consisted of initial values of 𝜌 within the incremental range [0, 1], with steps of 0.01. For the 
bimodal model, the initial values of 𝜓 are randomly chosen, for every value of 𝜌, from the interval [0, 2𝜋]. 
This system was then simulated until asymptotic behaviour emerged. The order parameters modulo (|𝑧(𝑡)|) 
was subsequently calculated for different coupling strengths to produce the bifurcation diagram. Table 1 
lists the parameter settings that were applied in the numerical simulations of equation (15) and (16) to 
reach asymptotic behaviour. A distinction has been made between simulating a ‘unimodal’ and ‘bimodal’ 

version of the Kuramoto model. The bimodal model has thereby been analyzed with 𝜔0 = 1 and 𝜔0 = 2, 
creating two bimodal states to therewith have a wider view on the behaviour of the dynamical system.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
System identification 
Subsequently, a system identification approach is applied to extract the deterministic components from 
the order parameters’ time series, which is based on the calculation of probability densities. The aim 
thereby is to provide a proof of concept for the ability to reproduce the order parameters’ time series, 
approximately equal to equation (13) and (14). The dynamical system studied is described in the form of 
a generalised Langevin-equation (Van Mourik, Daffertshofer & Beek, 2006; Van Mourik, Daffertshofer & 
Beek, 2006): 
�̇� = 𝑓(𝜌) + 𝑔(𝜌)Γ(𝑡).          (17) 
Equation (17) displays the evolution of the order parameter (i.e. the derivative of 𝜌 with respect to time 
𝑡) with deterministic (𝑓(𝜌)) and stochastic (𝑔(𝜌)Γ(𝑡)) components, which provides insight into the devel-
opment of frequencies over time. The deterministic components correspond to the intrinsic forces caused 
by the interactions between oscillators. The stochastic forces, which incorporate the randomness of the 

oscillators’ natural frequencies, initial phases and the external noise, are induced by stochastic force 𝜉, but 
are not included in this analysis (Daffertshofer, 2010; Van Mourik et al., 2006; Van Mourik et al., 2006).  

Parameter Settings 
‘unimodal 

Settings 
‘bimodal’ 

𝑵   50 000  50 000  

𝑻   25  25  

𝝎𝟎  0  1 𝑎𝑛𝑑 2  

∆  0.5   0.5  

𝜿  0: 0.05: 5  0: 0.1: 10  

∆𝒕  5 ∗ 10−4  5 ∗ 10−4  

𝑸𝝆  10−4  10−4  

𝑸𝝍  
 

0  0  

Table 1: Parameter settings for the numerical sim-
ulations of the order parameters’ dynamics (equa-
tion (15) and (16)) 
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To be able to reconstruct the deterministic dynamics and to reproduce the order parameters’ time 
series, as described by Martens et al. in equation (15) and (16), the drift coefficient D(1) is identified, for 
both 𝜌 and 𝜓. The aim thereby is to create two two-dimensional (𝜌 and 𝜓) polynomial functions to model 
the dynamical system and to analyse the qualitative characteristics of the system. The claim for these 
functions to be polynomial is deducted from equations (13) and (14), which show polynomial functions 
apart from the trigonometric terms. D(1) represents the first Kramers-Moyal coefficient in the dynamics of 
the corresponding probability density (Daffertshofer, 2010). The Kramers-Moyal coefficients, can be com-
puted by: 

𝐷(𝑘)(𝑥) =  lim
∆𝑡 →0

 
1

∆𝑡
 
1

𝑘!
 ∫(𝑥 − 𝑥′)𝑘 𝑝(𝑥, 𝑡 +  ∆𝑡|𝑥′, 𝑡)𝑑𝑥′       (18) 

Hereby, D(1) is identical to the first order cumulant, and ∆𝑡 represents an infinitesimal time step as the 
limit approaches zero. To extract this coefficient from the data, first, the data was binned into a range of 
values associated with each variable. Thereby, the data is divided into equally spaced parts (bins). The 
assumption holds, that at time 𝑡′, the previous sample was present in a bin with centre 𝑥’, which relates 
to a future sample at time 𝑡, being present in a bin with centre 𝑥 (𝑡 >  𝑡′). This method is performed by 
computing the conditional probability density (𝑝(𝑥, 𝑡|𝑥′, 𝑡′)), that has to be executed for each combination 
of bins and all adjacent pairs of samples (Daffertshofer, 2010). 
 The polynomial functions describing the drift coefficient (D(1)), can be of multiple orders. To be 
able to reproduce the dynamical system as described in equation (13) and (14), it is shown that, after 
simplifying both equations, the polynomial function consists of coefficients 𝑏𝜌 and 𝑑𝜌3. In accordance with 

equation (14), after simplifying, it is shown that the parameters comprise: 𝑏 =
𝜅

2
− ∆ and 𝑑 =  −

𝜅

2
.  

 To illustrate the proper functioning of the above described method in the case of 𝜔0 = 0 repre-
senting the conventional Kuramoto model, the drift coefficient for 𝜅 = 10, is shown in figure 6. Unstable 
and stable fixed points are displayed as triangles, pointing upwards or downwards, respectively. The figure 
shows a stable fixed point at a high value of 𝜌, indicating almost full synchronization of the dynamical 
system for this 𝜅-value. Because 𝜅𝑐 = 1 in the unimodal situation, this topological outline of the system 
was expected.    
 
Model comparison  
The coefficients of the polynomial function are based on the paper of Martens et al., displayed in equation 
(13) and (14). If these equations however would not have been known, a model comparison method could 
have been applied to test for which order of the polynomial function would fit best to the data. Despite the 
knowledge of the coefficients from the paper of Martens et al., a model comparison is applied to test for 

Figure 6: Drift coefficient (blue dots), according to equation 
(15) and (16) and a polynomial fit (red line), for 𝜔0 = 0 and 
𝜅 = 10, showing an unstable fixed point (upward pointing tri-
angle) and a stable fixed point (downward pointing triangle). 
As 𝜅 is large, a stable fixed point appears for a high value of 
𝜌, showing almost full synchronization of the dynamical sys-
tem.  
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this. Two well-known information criteria include the Akaike Information Criteria (AIC) and the Bayesian 
Information Criteria. The equations belonging to the two comparison methods comprise:   

AIC =  −2 ln ℒ(θ̂) + 2p;           (19) 
BIC =  −2 ln ℒ(θ̂) + p ln n.         (20) 
Hereby, ℒ(θ̂) is the likelihood of the estimated model given the model residuals, with σ̂2, the maximum 
likelihood estimate for the variance of the error term distribution, 𝑝 gives the total number of parameters 
that are estimated in the model (including σ2 for general linear models), and 𝑛 represents the sample size. 
They all include the same goodness-of-fit term, but the BIC has a more stringent penalty term than the 
AIC. The goodness-of-fit term is measured by the maximized likelihood an this is overall balanced by the 
simplicity of the model, as referred to by the dimension 𝑝, of the fitted model parameter space. In all 
criteria, the smaller the outcome, the better the model represents the true data (Aho, Derryberry, & 
Peterson, 2014; Ward, 2008).  
 The Kullback-Leibler information (KL-information or KL-divergence) 𝐼(𝑓, 𝑔), is used to determine 

the information that is lost when comparing the true model 𝑓(𝑥) with an approximating model 𝑔(𝑥│𝜃), 

where 𝜃 defines the model space (Burnham, Anderson, 2004). In the approximating model the parameters 
are known. For discrete probability models, the KL-information is defined as:  

𝐼(𝑓, 𝑔) =  ∑ 𝑓(𝑥) ln [
𝑓(𝑥)

𝑔(𝑥│𝜃)
]𝑥 .         (21)  

When comparing models, the best model will lose the least information with respect to the true data relative 
to the other candidate models. This is equivalent to minimizing 𝐼(𝑔, 𝑓) over 𝑓(𝑥). 𝐼(𝑔, 𝑓) requires 
knowledge about the true data set and parameters in the candidate models, and is therefore not directly 
applicable in model selection. The model parameters must be estimated by minimizing the expected 
estimated KL-information, using the maximum likelihood estimator (MLE) (Aho et al., 2014; Burnham, 
Anderson, 2004). The expectations with respect to the true model is denoted by the following equations in 
the case of discrete data:  
𝐼(𝑓, 𝑔) = 𝐸 [log(𝑓(𝑥))] − 𝐸 [log( 𝑔(𝑥|𝜃))].        (22) 

Here, 𝐸 [log(𝑓(𝑥))] is a constant across the analysis of models and therefore this part does not depend on 

the true data or the model. Only the relative expected part of the KL-information (𝐸 [log( 𝑔(𝑥|𝜃))]), needs 
to be estimated for each candidate model (Burnham, Anderson, 2004).  

The decision of which model comparison method to choose has proven to be difficult considering 
both criteria answer different questions. The AIC is applied to compare non-nested models and models 
based on different probability distributions. In the AIC, the unknown parameters are estimated by 

maximizing the likelihood function 𝑔(𝑥│𝜃) over the parameter space. This function evaluates the 
conformity of the model to the observed data, by searching among a collection of candidate models ℱ =

{ℱ(𝑘1), ℱ(𝑘2), … , ℱ(𝑘𝐿)}, for the fitted model 𝑔(𝑥│�̂�) , with 𝑘 ∈ {𝑘1, 𝑘2, … , 𝑘𝐿}. This fitted model serves 
as the ‘best’ approximation to the true data 𝑓(𝑦) (Aho et al., 2014).  

The AIC chooses the most complex model as the sample size increases (efficient method), which 
will best predict the future sample. This causes the chance of imprecise modeling and tapering effects. The 
preference of the AIC to choose the most complex model is a disadvantage. The value of the criterion can 
decrease as the number of parameters in the fitted model is increased, which causes the fitted model to 
being either correct or overfitted. Thus, when the complexity of the observed data increases, the model 
that is more capable of adapting to the data, referring to the most complex model, will be chosen.  

An important characteristic of the AIC is asymptotic efficiency, which minimizes the prediction error 
according to the Kullback-Leibler discrepancy between the generating model and the fitted approximating 
model. Therefore, the AIC maximizes predictive accuracy. When a generating model is of an infinite 
dimension and therefore lies outside the candidate collection, an asymptotically efficient criterion will 
asymptotically select the fitted candidate model which minimizes the mean squared error of prediction. 
With the AIC, overfitting gives a model that will have a lot of random noise, while underfitting provides a 
model that will be biased when used for future prediction (Aho et al., 2014).  

The BIC is an asymptotic, unbiased, large-sample approximation of the Bayes factor, thereby 
assuming equal priors on candidate models. The model which is a posteriori most probable, will be selected. 
The method is based on a multivariate normal distriubtion centered on the MLE, and does not require the 
specification of priors. The Bayes factor represents the ratio of the posterior probability of the candidate 
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models. The minimum value of the BIC is in accordance with the highest Bayesian posterior probability 
(Aho et al., 2014; Burnham, Anderson, 2004).   

With increasing sample size, the probability of the best model increases to one, and the probability 
of the other models decreases to zero. There is therefore a clear target model that the BIC is looking for, 
although this does not automatically mean this model is the true model (Burnham, Anderson, 2004). When 
the sample size is smaller than 7.4, the BIC assigns more weight to complex models than the AIC does, 
but as the sample size increases, the BIC assigns more weight to simpler models in comparison to the AIC 
(Ward, 2008). For small sample sizes, the model selected by the BIC may be much more parsimonious in 
comparison to the selected model of the AIC. The BIC-selected model may thus be underfitted with a small 
sample size and performs better with large sample sizes (Aho et al., 2014; Burnham, Anderson, 2004).  

The Bayes’ Theorem describes the joint posterior of 𝑀𝑘 and 𝜃𝑘: 

ℎ((𝑘, 𝜃𝑘)|𝑥) =  
𝜋(𝑘) 𝑓(𝜃𝑘|𝑘) 𝐿(𝜃𝑘|𝑥)

𝑚(𝑥)
,         (23) 

with 𝑚(𝑥) representing the marginal distribution of 𝑥, 𝜋(𝑘)  (𝑘 ∈  {𝑘1, 𝑘2, … , 𝑘𝐿}) is the discrete prior over 

the candidate models and 𝑓(𝜃𝑘│𝑘) is the prior on 𝜃𝑘. When the sample size increases, the chance of 
choosing the correct model increases (Aho et al., 2014; Burnham, Anderson, 2004). To choose between 
two models,  𝑀𝑘1 and  𝑀𝑘2, a Bayes factor is often applied. The Bayes factor: 𝐵12, is defined as the ratio 

of the posterior odds of  𝑀𝑘1: 
𝑃(𝑘1|𝑦)

𝑃(𝑘2|𝑦)
, to the prior odds of  𝑀𝑘1: 

𝜋(𝑘1)

𝜋(𝑘2)
. If 𝐵12 >  1, model 𝑀𝑘1 is favored 

by the data, and if 𝐵12 <  1, model 𝑀𝑘2 is favored by the data (Burnham, Anderson, 2004; Ward, 2008). 
When more than two models are being compared, and all models have equal prior weight, the Bayes factor 
of model 𝑘 becomes:  

𝐵𝐹 =  
𝑃(𝑥|𝑀𝑘)

∑ 𝑃(𝑥|𝑀𝑖)𝑖
.           (24) 

This is a computationally intensive approach with the difficulty of specifying prior distributions. Bayes 
factors are known to be unstable and sensitive to the choice of priors. In applying the BIC, it is therefore 
essential to choose proper priors (Ward, 2008).  

The BIC is a consistent criterion, meaning that it will asymptotically select the fitted candidate model 
with the correct structure and probability one, as the sample size increases. This selected model can be 
biased at small sample sizes as an estimator of its target model (Aho et al., 2014; Burnham, Anderson, 
2004). The differences between the AIC and BIC will be especially pronounced in large sample settings.  

The BIC refers to conformation/falsification whereby it is expected to find the correct model, as 
sample size increases and the process that generates the data is relatively simple (consistent method). 
Hypothesis testing with precisely specified models of low dimension are therefore required in the BIC 
(Burnham & Anderson, 2004). As the sample size increases, both criteria will work better, but with different 
goals. For the AIC, predictive power increases when the model and sample size are large. The BIC, on the 
other hand, chooses a fixed complexity with increased sample size, but then has a larger probability of 
selecting the true model. With the AIC, overfitting leads to a model that will have a lot of random noise, 
while underfitting provides a model that will have a bias when used for future prediction (Aho et al., 2014). 
 The above mentioned criteria can be divided into two groups, as stated by Ward (2008): 
“generalization-based criteria”, and “explanation-based criteria”. Generalization-based criteria (AIC) aim 
to find the best model that fits both current data and potential future data from the same generating 
process. Explanation-based criteria (BIC) try to identify the generating process, without influence of 
potential future data (Ward, 2008).  

As argued above, both criteria have distinct pros and cons. Therefore, both have been applied in a 
model comparison analysis in all three datasets included in this study. The polynomial models that were 
compared are shown in table 2.  
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Model 1: 𝒇𝟏(𝝆) = 𝒂𝝆 + 𝒃𝝆𝟐  
 

Model 2: 𝒇𝟐(𝝆) = 𝒂𝝆 + 𝒃𝝆𝟑  
 

Model 3: 𝒇𝟑(𝝆) = 𝒂𝝆𝟐 + 𝒃𝝆𝟑  
 

Model 4: 𝒇𝟒(𝝆) = 𝒂𝝆 + 𝒃𝝆𝟐 +  𝒄𝝆𝟑  
 

2.1.2 Oscillators’ dynamics 
 
In the second part of this study, a dataset was numerically simulated by performing simulations of the 
conventional Kuramoto model (equation (4)), with multiple values for 𝜔0 and ∆ to create uni- and bimodal 
frequency distributions. Table 3 lists the parameter settings that were applied in these numerical simula-
tions. In contrast to the simulations of the order parameters’ dynamics, in this part of the study, 𝜑′𝑠 were 
simulated. A wide view on the behaviour of the dynamical system was created by drawing 𝜑 from a von 
Mises distribution that ensured the initial 𝜌-values to cover the range [0, 1]. This is defined as perturbations 
existing of sequencing initial conditions, acting as random perturbations in the concatenated data, resulting 
in distinct transient behaviour. The correct amount of perturbations depends on both the strength of the 
noise and the amount of data points. The correct balance between these components had to be found, 
including sufficient perturbations to be able to analyze the reaction of the system, without reaching a 
‘stable value’ too quickly. The ∆-values describe the width of the distribution(s). 𝜔0 defines the initial 

condition of the natural frequencies, and as stated by Martens et al. (2009), 𝜔0 >  
∆

√3
 for the distribution 

to be bimodal. 𝜅 defines the coupling strength of the network, where according to Strogatz (2000), in the 

unimodal situation: 𝜅𝑐 =  
2

𝜋𝑔(0)
  and 𝑔(𝜔) =  

∆

𝜋(∆2+ 𝜔2)
. To improve statistical accuracy, the simulations were 

repeated eight times. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Because of the finite number of 𝜑′𝑠 in these simulations, the equation for the order parameter 
comprises: 

𝜌(𝑡) =
1

𝑁
 |∑ 𝑒𝑖𝜑𝑗(𝑡)

𝑗 |,          (25) 

with 𝜑 representing the phase of an oscillator at time 𝑡, and 𝜌 is the order parameter.  

Parameter Setting 
𝑵   10 000  

⋕ 𝒏𝒐𝒅𝒆𝒔    500  

T 25  

𝝎𝟎  (0: .1: 3) ∗
𝛿0

√3
  

∆   (0:2)

2
   

𝜶  (0: .1: 3)3  

𝜿   (0: 0.05: 5)  

∆𝒕  5

1000
  

Initial 
Values of 𝝋 

100  

Table 3: Parameter settings for the numer-
ical simulations of the oscillators’ dynamics 

(equation (4)) 

 

Table 2: Polynomial models included in the AIC and 
BIC model comparison methods.  
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To solve the differential equation of the Kuramoto model, a fourth-order Runge-Kutta numerical 
integration with adaptive step size was applied.   

The asymptotic solution (last 100 samples) of 𝜌 is applied in a bifurcation analysis. The dynamics 
will not reach a stable point but will fluctuate near the end of the simulation (synchrony or asynchrony). 
This can be explained by the thermodynamic limit which occurs in data with finite sizes, and causes finite 
size effects. This behaviour resembles erratic motion and is therefore considered as noise in this dataset.  
 
System identification 
Subsequently, a system identification approach is applied, as is extensively described in section 2.1.1, to 
extract the deterministic components from the oscillators’ time series and to deduct polynomial functions 
to describe the data. By performing a bifurcation analysis and comparing the qualitative behaviour of the 
order parameters’ and oscillators’ dynamics, it can be verified whether the proposed method by Martens 

et al. is also applicable to this data set. 
 
Model comparison 
As previously described in section 2.1.1, a model comparison has been applied to both numerically simu-
lated data sets in this study. In the oscillators’ dynamics, the goal of the model comparison is to check 

whether the polynomial functions (equation (13) and (14)) are also applicable to this data set. 

2.2 Empirical data  
 
In the third part of this study, PD resting-state MEG data was obtained from the VU medical center Am-
sterdam. The main goal was to assess the applicability of the previously described bimodal frequency 
distribution (see section 2.1.1) of the Kuramoto model to empirical data. The analyzed data was selected 
and used in a previous study by Olde Dubbelink et al. (2013), which comprised a longitudinal study cohort 
(Olde Dubbelink et al., 2013).  
 
Subjects 
At baseline, 70 idiopathic PD patients and 21 healthy controls, age-matched to the de novo (early stage) 
patients, were included in the study. Patients were subdivided into groups according to their disease du-
ration, i.e. 18 recently diagnosed, de novo untreated patients, 19 mild PD patients (disease duration 3-5 
years), a group of mild-moderate PD patients (N=16, disease duration 6-8 years) and a group of moderate 
PD patients (N=17, disease duration 9-11 years). The latter three groups comprise 37 PD patients with 
levodopa-treatment. Controls were age-matched to PD patients in all groups. Follow-up measurements 
after 4.3 ± 0.8 (mean ± standard deviation) years were completed by 59 PD patients and 16 controls.  

Disease duration was defined by the patients’ subjective estimate of the onset of the first motor 
symptoms. Additional subject characteristics as described by Olde Dubbelink and co-workers include: the 
Unified Parkinson’s Disease Rating Scale motor ratings (UPDRS-III) obtained in the ‘ON’ medication state; 

the Cambridge Cognitive Examination (CAMCOG) scale for global cognitive functioning and presence of 
dementia; and daily dose of levodopa. Thereby, a specific neuropsychological evaluation has been per-
formed including three tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) 
and the Vienna perseveration task (VPT) was conducted to measure perseverance in generating random 
motor behaviour (Olde Dubbelink et al., 2013). 
 
MEG data acquisition and pre-processing 
MEG data were acquired as previously described by Olde Dubbelink and co-workers using a 151-channel 
whole-head radial gradiometer MEG system. A recording band pass was set at 0.25-200 Hz with a sample 
rate of 312.5 Hz. MEG data was recorded for five minutes in an eyes-closed, resting-state condition. Pa-
tients treated with levodopa were recorded in the ‘ON’ medication state. The data was divided into epochs 
of 4096 samples of which four artifact-free epochs were selected. Due to different technical problems 12 
of the original 151 channels were excluded. For further analysis, the epochs were converted to ASCII-files 
and imported into the BrainWave software package (see Olde Dubbelink et al., 2013 for details).   

MEG sensor signals were projected to an anatomical framework consisting of 78 cortical regions 
by an atlas-based beamforming approach. Time series of 6 frequency bands (delta (0.5-4 Hz), theta (4-8 
Hz), alpha1 (8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz) and gamma (30-48 Hz)) were subsequently 
estimated to determine neural activation. Eventually six sets of 78 time-series were conducted.     
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Data analysis 
The PD MEG data is first filtered from the alpha1 to the beta frequency band (8-30 Hz) using a second 
order Butterworth band pass filter. To extract the phases of the MEG data, the Hilbert transform is applied 
and the global order parameter (𝜌) is calculated. Subsequently, to be able to calculate 𝜓, the data was 
filtered, again with a second order butterworth band pass filter, to the alpha1 (8-10 Hz) and beta (20-30) 
frequency band. Thereafter, the order parameters 𝜌1 and 𝜌2 for both groups of oscillators (alpha1 and 
beta) were determined and the average phase difference (𝜓) between the groups was calculated. 𝜌 and 
𝜓 are subsequently applied in the analysis as set up in paragraph 2.1.1, including a system identification 
approach and bifurcation analysis to analyze the dynamics of the empirical data. The aim thereby is to look 
for the simultaneous changes in alpha1 and beta frequency and whether this can be modelled by applying 
a bimodal frequency distribution to the Kuramoto model of coupled phase oscillators. A bifurcation analysis 
of the system will show whether this method is applicable to the PD MEG data and whether it is beneficial 
in comparison to the unimodal frequency distribution of the natural frequencies.  
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3 Results 

3.1 Numerical analysis 

3.1.1 Order parameters’ dynamics  
 
The system identification approach was successfully applied to numerical simulations of equation (15) and 
(16), as is displayed in figure 7 and 8. A proof of concept for the ability to reproduce the results of the 
paper by Martens and co-workers is displayed in figure 7A and C, where the asymptotic solutions of the 
order parameter are similar to the zero crossings of the drift coefficient. It was therefore decided to con-
tinue the analysis according to the proposed method (section 2.1.1).  

 Equation (15) and (16) are composed of a deterministic and stochastic part. 𝐷(1)⃗⃗⃗⃗⃗⃗ ⃗⃗  is extracted for 

𝜌 and 𝜓, representing vector field: (
𝐷𝜌

(1)

𝐷𝜓
(1)). In equation (16) the stochastic part is equal to zero (for a more 

detailed description see section 2.1.1). Therefore, in the system identification approach, equation (15) and 
(16) can be rewritten into: 

�̇� = 𝐷𝜌
(1)(𝜌, 𝜓) + 𝐷𝜌𝜌

(2)(𝜌,𝜓)         (26) 

�̇� = 𝐷𝜓
(1)(𝜌, 𝜓)              (27) 

Thereby, as previously described in section 2.1.1, only 𝐷(1) is included for further analysis of the system. 
  Because 𝜓 is defined by the phase difference between the two Lorentzian distributions that are 

included in the bimodal model, in the unimodal situation when 𝜓 = 0, 𝐷𝜌
(1)(𝜌, 𝜓) describes the qualitative 

behaviour of the system. In the bimodal situation, when 𝜓 can exhibit any value, both  and 𝐷𝜓
(1)(𝜌, 𝜓) are 

taken into account.   
The asymptotic solutions of 𝜌, represented in figure 7A and C, show different behaviour in the 

unimodal and bimodal situation. In the unimodal situation, the asymptotic solutions resemble the theoret-
ical behaviour of the order parameter as described by Strogatz (2000), while in the bimodal situation, the 
asymptotic solutions show deviations of this behaviour between 𝜅 = 2 and 𝜅 = 5. Thereby, 𝜅𝑐 shifted from 
1 in the unimodal situation, to 2 in the bimodal situation. However, both systems stabilize at a certain 
point.  
 Figure 7B and D represent the overall behaviour of the dynamical system in the unimodal and 

bimodal situation, respectively, including 𝐷𝜌
(1)(𝜌, 𝜓) and a null cline representing the zero-crossings of 

𝐷𝜌
(1)(𝜌, 𝜓). 
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Figure 8 shows results of 𝐷𝜌

(1)(𝜌, 𝜓) for three different 𝜅-values. Stable fixed points (referring to 
synchronization/desynchronization of the system) are equal to the zero-crossings where the derivative of 

𝐷𝜌
(1)(𝜌, 𝜓) has a negative slope, whereas unstable fixed points are appointed by a positive slope of the 

derivative. When comparing the unimodal to the bimodal situation in figure 8, it is shown that the topo-
logical outline of both systems do not differ qualitatively for all displayed 𝜅-values. The polynomial fit 
however, deteriorates in the bimodal situation.  

Figure 7 and 8 confirm that, as described by the conventional Kuramoto model, when 𝜅 < 𝜅𝑐, there 
is no synchronization of the system, and when 𝜅 > 𝜅𝑐 the system starts to synchronize. This is applicable 
to both the uni- and bimodal situation.   

Figure 7: Numerical simulations of equation (15) and (16) A & C: Influence of the coupling strength on synchronization. The 

asymptotic solutions of 𝜌 are represented by the blue dots and the red crosses denote the zero-crossings of 𝐷𝜌
(1)(𝜌, 𝜓),  both 

dependent on coupling strength 𝜅. A: Unimodal situation: 𝜔0 = 0. The black line represents the theoretical behaviour of 𝜌. 

The similarity in the asymptotic solutions of 𝜌 and the zero crosses of 𝐷𝜌
(1)(𝜌, 𝜓) provide a proof of concept for the ability to 

reproduce the results by the paper of Martens et al.. C: Bimodal situation: 𝜔0 = 2. The dotted black line is plotted to display 

the deviations in this situation of the asymptotic solutions of 𝜌 and the zero crossings of the 𝐷𝜌
(1)(𝜌, 𝜓). Note: κc = 1 when 

ω0 = 0 and κc = 2 when ω0 = 2. B & D: Total topological outline of 𝐷𝜌
(1)(𝜌, 𝜓) for each 𝜅- and 𝜌- value including a 

polynomial fit of the zero crossings of 𝐷𝜌
(1)(𝜌,𝜓) represented by the black line. B: Unimodal situation: 𝜔0 = 0. D: Bimodal 

situation: 𝜔0 = 2.  
  

A.   
 

B.   
 

C.   
 

D.   
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A.   
 

Figure 8: 𝐷𝜌
(1)(𝜌, 𝜓) (blue dots) with a polynomial fit (red line) including unstable fixed points (triangle pointing upwards) 

and stable fixed points (triangle pointing downwards). The stable fixed points are appointed by the zero crossings of the 

polynomial fit where the derivative of 𝐷𝜌
(1)(𝜌, 𝜓) is negative. The unstable fixed points are appointed by the zero crossings of 

the polynomial fit where the derivative of 𝐷𝜌
(1)(𝜌, 𝜓) is positive. A: Unimodal situation: 𝜔0 = 0, 𝜅 = 0. B: Bimodal situation: 

𝜔0 = 2, 𝜅 = 0. A & B: As 𝜅 < 𝜅𝑐 an unstable fixed point appears for a very low value of 𝜌, representing asynchrony in the 
dynamical system.C: Unimodal situation: 𝜔0 = 0, 𝜅 = 5. D: Bimodal situation: 𝜔0 = 2, 𝜅 = 5. C & D: As 𝜅 > 𝜅𝑐, a stable 
fixed point appears for a high value of 𝜌, representing almost full synchronization of the dynamical system. E: Unimodal 
situation: 𝜔0 = 0, 𝜅 = 10. F: Bimodal situation: 𝜔0 = 2, 𝜅 = 10. E & F: As 𝜅 ≫ 𝜅𝑐 is large, a stable fixed point appears for 
a high value of 𝜌, showing almost full synchronization of the dynamical system. 
   

B.   
 

C.   
 

D.   
 

E.   
 

F.   
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𝐷𝜌
(1)(𝜌, 𝜓) and 𝐷𝜓

(1)(𝜌, 𝜓) are visualized in figure 9 in the unimodal and bimodal situation. Figure 

9B displays that 𝜓 shows nullclines for 0, 𝜋 and 2𝜋. Thereby, both the nullcline at 0 and 2𝜋 are stable, and 
the nullcline at 𝜋 is unstable. The expectation of 𝜓 to be equal to zero in the unimodal situation is therefore 
confirmed (see equation (16)). This analysis confirms the stable fixed points that are visualized in figure 
8. Furthermore, when combining both figures for 𝐷𝜌

(1)(𝜌, 𝜓) and 𝐷𝜓
(1)(𝜌, 𝜓), fixed points of the bimodal 

system can be localized. When the nullcline of both 𝐷𝜌
(1)(𝜌, 𝜓) and 𝐷𝜓

(1)(𝜌, 𝜓) are stable and overlap, they 

indicate the position of a stable fixed point. 𝐷𝜓
(1)(𝜌, 𝜓) does show values in the bimodal situation, confirming 

what was expected as described previously.  
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The polynomial fit as applied to 𝐷𝜌

(1)(𝜌, 𝜓) is based on equation (13) and (14). Figure 10A and B 

show the parameters of a polynomial function with 𝑏𝜌 and 𝑑𝜌3. As applied to the order parameters’ times 
series, 10A and B indicate the accuracy of these parameters in both the uni- and bimodal situation. When 
a polynomial function with parameters 𝑎, 𝑏𝜌, 𝑐𝜌2 and 𝑑𝜌3 is applied, its inaccuracy is displayed in figure 

Figure 9: Two-dimensional drift coefficients 𝐷𝜌
(1)(𝜌, 𝜓) (A and C) and 𝐷𝜓

(1)(𝜌, 𝜓) (B and D) plus null clines 
(black lines) for different 𝜅-values. The null clines are stable when the contour of the figure decreases (negative 
slope) in height (see colorbar), or are unstable when the contour of the figure increases (positive slope) in height. 
A and B: Unimodal situation (𝜔0 = 0). C and D: Bimodal situation (𝜔0 = 2). E: Colour bar indicating the height 

of the contour colors. When comparing 𝐷𝜌
(1)(𝜌,𝜓) in the uni- and bimodal situation no big differences can be 

seen in the topological outline of the system. For 𝐷𝜓
(1)(𝜌, 𝜓) however, the figure displays stable null clines for 

0 and 2𝜋 in the unimodal situation and a more flat topology and different values for the null clines in the bimodal 
situation.  
  
 

A.   
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10C. By comparing multiple polynomial functions with different parameters by means of a model compar-
ison method, it can be either confirmed or rejected whether the proposed parameters according to equation 
(13) and (14) are correct.  

 

As described in section 2.1.1, the AIC and BIC are applied to test for which model is the best fit to 
the uni- and bimodal data and to either reject or confirm the parameters of the polynomial function as 
proposed by Martens and co-workers.  

The models that are included in the model comparison are displayed in table 2 (see section 2.1.1, 
model comparison). The average AIC and BIC values1 for each model applied to the order parameters’ 

dynamics are displayed in table 4.  
 

Table 4: AIC and BIC values for each model applied to the order parameters’ dynamics, for the uni- and bimodal situation.  
 𝝎𝟎 = 𝟎 𝝎𝟎 = 𝟐 
Model 1 2 3 4 1 2 3 4 
Average AIC-value 5,61 4,76 8,79 7,61 5,22 4,49 8,04 7,22 
Average BIC-value 32,07 31,22 35,24 42,89 31,68 30,95 34,50 42,50 

  
 Table 4 shows that for both the unimodal and bimodal situation, model 2 (𝑓2(𝜌) = 𝑎𝜌 + 𝑏𝜌3) gives 
the lowest scores for both the AIC and BIC. While, as described in section 2.1.1, the two methods are hard 
to compare because they answer different questions, both methods choose the same model to be the best 
fit to the data. The parameters of the polynomial function as described by Martens and co-workers are 
thereby confirmed.  

                                                 
1 The AIC and BIC scores for each 𝜅-value are detailed in appendix B.  
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Figure 10: Polynomial functions with different parameters fitted to the uni- and bimodal data to check for the accuracy 
of the parameters to describe the order parameters’ dynamical system. The accuracy is confirmed when the colored dots 

resemble the equally colored solid lines. A: Unimodal data (𝜔0 = 0) fitted with a polynomial function with parameters 
𝑏𝜌 and 𝑑𝜌3. B: Bimodal data (𝜔0 = 2) fitted with a polynomial function with parameters 𝑏𝜌 and 𝑑𝜌3. A and B: Both 
figures show that in both the uni- and bimodal data the accuracy of these parameters are confirmed. C: Unimodal data 
(𝜔0 = 0) fitted with a polynomial function with parameters 𝑎, 𝑏𝜌, 𝑐𝜌2 and 𝑑𝜌3. The deviations of the colored dots from 
the equally colored solid lines show the inaccuracy of these parameters.  
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3.1.2 Oscillators’ dynamics 
 

The system identification approach was successfully applied to numerical simulations of equation 

(4), as is displayed in figure 11 and 12. Thereby, in accordance with section 3.1.1, 𝐷(1)⃗⃗⃗⃗⃗⃗ ⃗⃗  is extracted for 𝜌 
and 𝜓.  

The asymptotic solutions of 𝜌, represented in figure 11A and B, show different behaviour in the 
unimodal and bimodal situation. In the unimodal situation, the asymptotic solutions resemble the theoret-
ical behaviour of the order parameter as described by Strogatz (2000), while in the bimodal situation, the 
asymptotic solutions show deviations of this behaviour between 𝜅 = 1 and 𝜅 = 5. Thereby, according to 
the asymptotic solutions of 𝜌, 𝜅𝑐 = 1 in the unimodal situation, whereas in the bimodal situation 𝜅𝑐 seems 

to be equal to 2 although this is not as clear as in the unimodal situation. The zero-crossings of 𝐷𝜌
(1)(𝜌, 𝜓) 

however, display another value for 𝜅𝑐 in the bimodal situation, i.e. 𝜅𝑐 = 3. The difference between the 

zero-crossings of 𝐷𝜌
(1)(𝜌, 𝜓) and the asymptotic solutions of 𝜌 indicate the inaccuracy of the polynomial fit 

which is applied to 𝐷𝜌
(1)(𝜌, 𝜓) and visualized in more detail in figure 12.  

When comparing the simulations of the order parameters’ dynamics and the simulations of the 

oscillators’ dynamics, the zero-crossings of 𝐷𝜌
(1)(𝜌, 𝜓) of the order parameters’ dynamics (figure 7A and C) 

follow the same line as the asymptotic solutions of 𝜌, though in the data of the oscillators’ dynamics (figure 
11A and C), a deviation of the zero-crossings is visible. This difference is related to the inaccuracy of the 
polynomial fit as applied to the oscillators’ dynamics which was based on the paper of Martens and co-
workers. When comparing the bimodal situation of both numerically simulated data sets (figure 7C and 
11C), the asymptotic solutions of 𝜌 seem to develop similarly considering the order parameters’ dynamics 

were simulated for 𝜅 = 1: 0.1: 10 and the oscillators’ dynamics for 𝜅 = 1: 0.05: 5. Thereby, the resolution 
of 𝜅 is equal in both data sets but the absolute values differ.     

 Figure 11B and D represent the overall behaviour of 𝐷𝜌
(1)(𝜌, 𝜓) in the unimodal and bimodal situ-

ation, respectively. Again, a difference is seen in comparing the bimodal situations of the order parameters’ 

dynamics and the oscillators’ dynamics (see figure 7D and 11D). Furthermore, figure 7B and D show that 

the values of 𝐷𝜌
(1)(𝜌, 𝜓) for both the uni- and bimodal situation are higher in comparison to the values of 

𝐷𝜌
(1)(𝜌, 𝜓) of the order parameters’ dynamics. 

 The issue regarding the asymptotic solutions of 𝜌 is whether this actually are the asymptotic so-
lutions, or whether the simulations were not recorded long enough and transient behaviour is exhibited. 
Especially in figure 11C, transient behaviour is likely displayed.     
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Figure 12 shows results of 𝐷𝜌

(1)(𝜌, 𝜓) for three different 𝜅-values. When comparing the unimodal 

to the bimodal situation, it is shown that the topological outline of both systems do not differ qualitatively. 
As described previously, the polynomial function which is derived from the paper of Martens and co-work-
ers, is not a proper fit as is especially visible in figure 12C, D, E and F.  

 When comparing 𝐷𝜌
(1)(𝜌,𝜓) of the order parameters’ dynamics and the oscillators’ dynamics, 

𝐷𝜌
(1)(𝜌, 𝜓) of the oscillators’ dynamics could deviate from 𝐷𝜌

(1)(𝜌, 𝜓) of the order parameters’ dynamics 

because this data set is not in a stationary regime or because a polynomial function cannot be fitted to the 
data. The Ott & Antonsen ansatz as proposed in the paper of Martens and co-workers could thereby be too 
coarse for this type of data.  

When comparing figure 8 to figure 12 it is visualized that the oscillators’ dynamics contain less 

data points in comparison to the order parameters’ dynamics.  
 
 
 

A.   
 

B.   
 

C.   
 
Figure 11: Numerical simulations of equation (4) A & C: Influence of the coupling strength on synchronization. The asymptotic 

solutions of 𝜌 are represented by the blue dots and the red crosses denote the zero crossings of 𝐷𝜌
(1)(𝜌, 𝜓), both dependent 

on coupling strength 𝜅. A: Unimodal situation: 𝜔0 = 0. The black line represents the theoretical behaviour of 𝜌. The difference 

in the asymptotic solutions of 𝜌 and the zero crosses of 𝐷𝜌
(1)(𝜌, 𝜓) is related to the applied polynomial function. C: Bimodal 

situation: 𝜔0 = 2. The dotted black line is visualized to display the deviations of the asymptotic solutions of 𝜌 and the zero 

crossings of the 𝐷𝜌
(1)(𝜌, 𝜓) in this situation. Note: κc = 1 when ω0 = 0 and κc does not show a distinct value when ω0 = 2. 

B & D: Total topological outline of 𝐷𝜌
(1)(𝜌, 𝜓) for each 𝜅- and 𝜌- value including a polynomial fit of the zero crossings of 

𝐷𝜌
(1)(𝜌, 𝜓) represented by the black line. B: Unimodal situation: 𝜔0 = 0. D: Bimodal situation: 𝜔0 = 2.  

  

D.   
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A.   
 

Figure 12: 𝐷𝜌
(1)(𝜌, 𝜓) (blue dots) with a polynomial fit (red line), including unstable fixed points (triangle pointing 

upwards) and stable fixed points (triangle pointing downwards). The stable fixed points are appointed by the zero 

crossings of the polynomial fit where the derivative of 𝐷𝜌
(1)(𝜌, 𝜓) is negative. The unstable fixed points are appointed 

by the zero crossings of the polynomial fit where the derivative of 𝐷𝜌
(1)(𝜌, 𝜓) is positive. A: Unimodal situation: 𝜔0 =

0, 𝜅 = 0. B: Bimodal situation: 𝜔0 = 2, 𝜅 = 0. A & B: As 𝜅 < 𝜅𝑐 an unstable fixed point appears for a very low value 
of 𝜌, representing asynchrony in the dynamical system. C: Unimodal situation: 𝜔0 = 0, 𝜅 = 2.5. As 𝜅 > 𝜅𝑐, a stable 
fixed point appears, showing partial synchronization of the dynamical system. D: Bimodal situation: 𝜔0 = 2, 𝜅 = 2.5. 
Because 𝜅𝑐 could not be appointed in this situation, but 𝜌 ≈ 0.3, partial synchronization of the system is shown. E: 
Unimodal situation: 𝜔0 = 0, 𝜅 = 5. F: Bimodal situation: 𝜔0 = 2, 𝜅 = 5. E & F: As 𝜅 > 𝜅𝑐, a stable fixed point 
appears, showing partial synchronization of the dynamical system.   

B.   
 

C.   
 

D.   
 

E.   
 

F.   
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𝐷𝜌
(1)(𝜌, 𝜓) and 𝐷𝜓

(1)(𝜌, 𝜓) are visualized in figure 13 in the unimodal and bimodal situation. Figure 

13B displays that 𝜓 shows nullclines different from 0, 𝜋 or 2𝜋 for 𝜅 = 0.5 and 𝜅 = 3 which deviates from 
the values of 𝜓 in figure 9B. Thereby, these values are unexpected because in the unimodal situation there 

is only one population so no phase difference should be present. In the bimodal situation 𝐷𝜓
(1)(𝜌, 𝜓) does 

show values, which is similar to 𝐷𝜓
(1)(𝜌, 𝜓) of the order parameters’ dynamics. The topological outline of 

𝐷𝜌
(1)(𝜌, 𝜓) does resemble that of the order parameters’ dynamics (as displayed in figure 9A and C) 

qualitatively. This is also confirmed by combining both figures for 𝐷𝜌
(1)(𝜌, 𝜓) and 𝐷𝜓

(1)(𝜌, 𝜓), whereby fixed 
points of the system can be localized as is previously described in section 3.1.1.  
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Figure 14A and B show the parameters of a polynomial function with 𝑏𝜌 and 𝑑𝜌3 as applied to the 

oscillators’ dynamics were also fitted to the order parameters’ dynamics. By comparing figure 10 with 

figure 14 it can be seen that both figures show completely different values for the parameters of the 
polynomial functions. The polynomial function as proposed by equation (13) and (14) therefore does not 
seem to be the proper fit to this data set.  

Figure 13: Two-dimensional drift coefficients 𝐷𝜌
(1)(𝜌, 𝜓) (A and C) and 𝐷𝜓

(1)(𝜌, 𝜓) (B and D) plus null clines 

(black lines) for different 𝜅-values. The null clines are stable when the contour of the figure decreases (negative 
slope) in height (see colorbar), or are unstable when the contour of the figure increases (positive slope) in height. 
A and B: Unimodal situation (𝜔0 = 0). C and D: Bimodal situation (𝜔0 = 2). E: Colour bar indicating the height 

of the contour colors. When comparing 𝐷𝜌
(1)(𝜌,𝜓) in the uni- and bimodal situation no big differences can be 

seen in the topological outline of the system, although in the bimodal situation the system starts to synchronize 

for a higher value of 𝜅. For 𝐷𝜓
(1)(𝜌, 𝜓), the figure displays stable null clines for 0 and 2𝜋 in the unimodal 

situation for 𝜅 = 1, 2 and 5 and different values for the nullclines in the bimodal situation. 
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As described in section 2.1.1, the AIC and BIC are applied to test for which model is the best fit to 

the uni- and bimodal data. The AIC and BIC are applied to the oscillators’ dynamics to test whether the 
proposed polynomial function is also applicable to this dataset.  

The models that are included in the model comparison are displayed in table 2. The average AIC 
and BIC values2 for each model applied to the oscillators’ dynamics are displayed in table 5.  

 
Table 5: AIC and BIC values for each model applied to the oscillators’ dynamics as included in the model comparison for the uni- 
and bimodal situation.   
 𝝎𝟎 = 𝟎 𝝎𝟎 = 𝟐 
Model 1 2 3 4 1 2 3 4 
Average AIC-value 15,28 14,47 17,13 17,28 13,86 13,01 15,07 15,86 
Average BIC-value 34,83 34,02 36,68 43,34 33,41 32,56 34,62 41,93 

  
 Table 5 shows that for both the unimodal and bimodal situation, model 2 (𝑓2(𝜌) = 𝑎𝜌 + 𝑏𝜌3) gives 
the lowest scores for both the AIC and BIC. Again, both methods choose the same model to be the best fit 
to the data and similar to section 3.1.1, both methods choose model 2. The parameters of the polynomial 
function as described by Martens and co-workers therefore do seem to be the best fit to this data.   
 
 

                                                 
2 The AIC and BIC scores for each 𝜅-value are detailed in appendix B.  

Figure 14: Polynomial functions with different parameters fitted to the uni- and bimodal data to check for the 
accuracy of the parameters to describe the oscillators’ dynamics. A: Unimodal data (𝜔0 = 0) fitted with a polyno-
mial function with parameters 𝑏𝜌 and 𝑑𝜌3. B: Bimodal data (𝜔0 = 2) fitted with a polynomial function with pa-
rameters 𝑏𝜌 and 𝑑𝜌3. C: Unimodal data (𝜔0 = 0) fitted with a polynomial function with parameters 𝑎, 𝑏𝜌, 𝑐𝜌2 
and 𝑑𝜌3. When comparing the parameters in this figure to those of the order parameters’ dynamics (figure 14), it 
is shown that both figures show completely different values for the parameters of the polynomial functions.  
  
 

A.              B.  
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3.2 Empirical data 
 
The bimodal frequency distribution in phase oscillators as described by Martens and co-workers is applied 
to experimental data to assess its applicability. The experimental data consists of PD resting-state MEG 
data as described in section 2.2.  

According to Olde Dubbelink and co-workers, multiple frequencies change over the course of the 
disease in PD. The average 𝜌(𝑡)-value is visualized in figure 15. Here, the average 𝜌(𝑡)-value does not 
show a distinct structure of disease progression. Therefore, it will not be meaningful to apply statistics to 
this measure. Rather, 𝜌 and 𝜓 are analyzed as a dynamical system to qualify changes in synchronisation 
over the course of the disease. 
 

 

Another way to visualize the deterministic behaviour of the dynamics is by determining the poten-

tial of 𝐷𝜌
(1)(𝜌, 𝜓), according to:  

𝑉(𝐷(1)) =  −∫𝐷(1) (𝜌) 𝑑𝜌.          (24) 
In this potential, local minima refer to stable fixed points, corresponding to the null clines of the drift 
coefficient (Daffertshofer, 2010). Figure 16 shows the potentials of 𝜌 for each frequency band. Because 
the beta and gamma frequency band include the largest frequency range, these potentials are more 
profound in comparison to those of the other frequencies. Stable fixed points are seen for all frequency 
bands for 𝜌 ≈ 0.2. 

The aim of this section of the study was to compare the alpha1 and beta band as is described in 
section 2.2. Figure 15 displays very little variability in the alpha1, alpha2, beta and gamma frequencies. 
In delta and theta, a sligth decrease of the average 𝜌(𝑡)-value can be appointed. Thereby, figure 16 shows 
a more profound potential for the delta and theta frequency in comparison to the alpha1 and alpha2 
frequencies. As a result of both figures 15 and 16, therefore, instead of alpha1 and beta, delta and theta 
have been chosen to be compared and analyzed in the following sections of the results.  
 

Figure 15: Average 𝜌(𝑡)-value for each frequency band divided into the different cohorts of the study. The average 
𝜌(𝑡)-value does not vary much within each frequency band over the course of the disease. Only in the delta and theta 
frequency band a slight decrease of the average synchronisation can be seen in time.    
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In the analysis of the delta and theta frequency, first, a system identification approach was applied 

to extract the deterministic components of the system. Thereby, 𝐷𝜌
(1)(𝜌, 𝜓) and 𝐷𝜓

(1)(𝜌, 𝜓) were estimated 

and analysed to qualify the system’s dynamics, similar to the analysis in section 3.1. Figure 17 displays 

𝐷𝜌
(1)(𝜌, 𝜓) and 𝐷𝜓

(1)(𝜌, 𝜓) for the PD resting-state MEG data. For 𝐷𝜌
(1)(𝜌, 𝜓), in all cohorts, there is an 

average 𝜌-value of approximately 0.2, as indicated by the stable null cline, which is in line with figure 15 

and 16. The figures for 𝐷𝜓
(1)(𝜌, 𝜓) represent a flat topological outline (see colour bar), indicating no struc-

ture, stability or stationarity, and 𝜓 is therefore neutrally stable. When figure 17 is compared to the analysis 
of numerical simulations of the bimodal frequency distribution of the order parameters’ and oscillators’ 

dynamics as is displayed in figure 9C and D, it is shown that both figures display totally different topological 
outlines. Therefore, the bimodal frequency distribution does not seem to apply to resting-state MEG PD 
data to model the simultaneous changes in delta and theta frequencies3.            
 

                                                 
3 The analysis and comparison of the alpha1 and beta frequencies, as was the initial idea, was also conducted and led to the 
same conclusion as for analyzing and comparing the delta and theta frequencies.    

Figure 16: Potentials (𝑉) of 𝜌 for each frequency band. The colors indicate the cohorts of the study. Because beta 
and gamma have a much wider frequency range in comparison to the other frequencies, these potentials include 
more data points and are therefore more profound.       
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Figure 17: Two-dimensional drift coefficients 𝐷𝜌
(1)(𝜌, 𝜓) (A) and 𝐷𝜓

(1)(𝜌, 𝜓) (B) plus null clines modelled with a 
polynomial fit of the fifteenth order (black lines) for each cohort of the study. The null clines are stable when the 
contour of the figure decreases (negative slope) in height (see colorbar), or are unstable when the contour of the 

figure increases (positive slope) in height.  C: Colour bar. The stable null cline of 𝐷𝜌
(1)(𝜌,𝜓) does not differ much 

when comparing the cohorts of the study but is approximately 0.2. 𝐷𝜓
(1)(𝜌, 𝜓) shows a flat topological outline 

similar for all cohorts, thereby representing no structure, stability or stationarity. 
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4 Discussion 

4.1 General conclusions 
 
The goal of this study was to validate the applicability of a bimodal frequency distribution in the Kuramoto  
model to PD resting-state MEG data, whereby the study of Martens et al., including a numerical analysis 
of order parameters’ dynamics, served as a framework (Martens et al., 2009). As an intermediate step, to 
resemble the finite size of the empirical data, numerical simulations of the oscillators’ dynamics were 
created with a uni- and bimodal distribution of the natural frequencies.  

The numerical simulations of the order parameters’ dynamics, the similarity of the asymptotic 
solutions of 𝜌 and the zero-crossings of the drift coefficient, resemble the results of the analysis of Martens 
and co-workers and thereby provide a proof of concept (displayed in figure 7A and C). The numerically 
simulated oscillators’ dynamics data do not show the same behaviour in comparison to the order parame-
ters’ dynamics when the bimodal frequency distribution is applied to the Kuramoto model according to the 
Ott & Antonsen ansatz (Martens et al., 2009).  

This study shows that PD resting-state MEG data do not exhibit similar behaviour in its bifurcation 
analysis in comparison to the numerical simulations of the order parameters’ dynamics described by equa-
tions (15) and (16) or the numerical simulations of the oscillators’ dynamics described by equation (4). 
The PD resting-state MEG data does not show any decrease in phase synchronization over the course of 

the disease and thereby 𝐷𝜓
(1)(𝜌, 𝜓) does not show any structure or value, i.e. is neutrally stable. The 

numerical simulations of the order parameters’ and oscillators’, on the other hand, show an increased state 
of synchronization for increasing 𝜅- values and 𝜓 displays structure (for this comparison, see figure 9, 13 
and 17). In short, there are three possible explanations for this inequality: 1) the PD data do not display 
this type of behaviour; 2) the model is not applicable to this type of (empirical) data because of its finite 
size; 3) the behaviour of the PD data system continuous to be transient and will not reach an asymptotic 
solution. The following paragraphs will thoroughly describe and extend the aforementioned results and 
conclusions.   

4.2 Previous studies 
   
The modification of a bimodal frequency distribution in the Kuramoto model of coupled phase oscillators 
has been studied several times. Crawford, was the first to accurately study a nonlinear stability analysis in 
the case of a bimodal frequency distribution (Crawford, 1994). In 1984 however, Kuramoto wrote a book 
on coupled oscillators and therein started the speculation on the bifurcation analysis in a bimodally distrib-
uted population of the oscillators’ natural frequencies (Kuramoto, 1984). This field of research has been 
extensively elaborated in the years after Kuramoto’s book but is still in need for further elucidation and a 
wider range of applicability. As for applying the bimodal frequency distribution to experimental data, no 
previous research has been published.      

4.3 System identification approach 
 
In this study, the system identification approach based on the estimation of Kramers-Moyal coefficients 
was shown to successfully identify the deterministic components of the numerically simulated data and 
resting-state MEG time series of PD patients. Transient behaviour was simulated in the oscillators’ dynam-

ics, to expand the spectrum of the system. By applying perturbations to the system, its inherent features 
need to be preserved as described by Van Mourik and co-workers. Key for these perturbations is for them 
to be instantaneous and uncorrelated and the interval between perturbations needs to allow the system to 
recover (Van Mourik et al., 2006).  

The drift coefficient was determined to analyze stable and unstable fixed points of the system, 
displayed in figures 8, 9, 12, 13 and 17. Especially in the two-dimensional drift coefficients of the simulated 

data (𝐷𝜌
(1)(𝜌, 𝜓) and 𝐷𝜓

(1)(𝜌, 𝜓)), not enough data points were recorded to create a detailed description of 

the behaviour of the system. A recommendation for future research therefore includes to decrease the 
resolution of 𝜓 and increase its step size. The limited number of samples also holds for the PD resting-
state MEG data. This limitation decreases the quality of the system identification procedure by restricting 
the estimation of probability densities necessary to calculate the Kramers-Moyal coefficients, and thereby 
the analysis of the stability of the empirical data (Van Mourik et al., 2006). A bigger sample size is therefore 
highly recommended in future studies, either through more trials or longer trial length. Another solution 
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to the limited sample size is found in statistical independence of recorded trials and stationarity of the 
attractor. This leads to a representative average of the individually computed probabilities to therewith 
compute the Kramers-Moyal coefficients (Van Mourik et al., 2006). 

The second Kramers-Moyal coefficient, the diffusion coefficient, analyzes the signal dependent 
noise which did not cover the main interest of this study and was therefore not taken into account. How-
ever, to complete the view on the dynamics of the system, in future studies, this coefficient should be 
considered.  

4.4 Model comparison 

In the numerical simulations of the order parameters’ dynamics, a polynomial function was known as 
described by Martens et al. (equation (13) and (14)). When this function however would not have been 
known and for the numerical simulations of the oscillators’ dynamics, a model comparison method was 
applied to test for which polynomial function would best describe the data. The applicability of the AIC and 
BIC is thoroughly described and compared in section 2.1.1. This comparison revealed that which method 
to apply is dependent on multiple factors. Therefore, no choice was made between the two methods and 
both were applied. The results of the AIC and BIC show that both methods select the same models for 
each analysis and for each data set. This thereby confirms the choice for the polynomial parameters as 
described by Martens and co-workers.  
 A difficulty in determining the correct order of the polynomial function and its parameters is in the 
dynamics of 𝜌. These dynamics are described in the range from [0,1], resulting in a limited range for the 
polynomial function to be visualized. The validity of the order of the polynomial function is questionable, 
although the topological outline of the system will not be affected by this.  
 

4.5 The Ott-Antonsen ansatz  
 

The method as set up by Martens et al., referred to as the Ott-Antonsen ansatz by the authors, 
forms a fundamental aspect of the current study. The ansatz holds two important assumptions: 1) an 
infinite amount of oscillators (thermodynamic limit); and 2) the application of a density function with low 
order Fourier coefficients. The simulations of the oscillators’ dynamics include a finite amount of oscillators 
whereby finite size effects appear which thereby differs from the order parameters’ dynamics. As for the 
second assumption, it is not known whether this is a correct approach because there seems to be a differ-
ence between the results of the order parameters’ dynamics and the oscillators’ dynamics. The question 
therefore is whether the Ott-Antonsen ansatz is the proper method to analyze the oscillators’ dynamics 
with a bimodal frequency distribution. When more oscillators are applied in the analysis there will be less 
finite size effects but it is unclear how this will affect the development of the Fourier series. It might 
enhance the similarity of the order parameters’ dynamics and the oscillators’ dynamics but because of a 
limited computational capacity this is beyond the scope of this study. 

The limits of the Ott-Antonsen ansatz are not fully clarified yet within the scope of the paper of 
Martens et al., including the Kuramoto model with a bimodal frequency distribution. The method is known 
to capture all the attractors in the case of a bimodal Kuramoto model as proposed by Martens et al., as 
well as for the unimodal Kuramoto model in its original form or with external periodic forcing. In other 
cases it does not give a complete view on the system’s dynamics and this therefore needs to be elucidated. 

In the current study however, this dilemma did not influence the results because the method proved to be 
successful in the case of randomly chosen distributed frequencies of the oscillators (Martens et al., 2009).  

Another assumption in the paper of Martens et al. is its symmetry between the two subpopulations. 
This symmetry entails ∆1=  ∆2, and 𝜔01

= 𝜔02
 (equation (8) and (9)) and results in the order parameters 

as described in equation (13) and (14). Because the results of the empirical data do not show symmetry 
between the two involved frequencies, the assumption of symmetry does not hold for this dynamical sys-
tem. An extension of the analysis in the current study could be an asymmetry between the subpopulations 
of the frequency distribution, giving both populations different weights (Martens et al., 2009). This asym-
metry will be more representative when modelling brain rhythms because as was discussed in section 4.3, 
the involved frequencies change in power and show a slowing of oscillations in disease progression. 
Thereby, the Ott-Antonsen ansatz assumes a homogenous coupling (global coupling in the Kuramoto 
model) although connectivity between populations will differ in comparison to connectivity within popula-
tions of oscillators. An idea for future research regarding this issue is the application of skewed distribution 
instead of a Lorentzian distribution to account for the differences within populations of oscillators. When 
the symmetry assumption is broken, the complex order parameters (equation (8) and (9)) of the system 
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will become uneven, resulting in a four-dimensional analysis. This system will be very complex and contains 
high computational effort.      

The average 𝜌-value of approximately 0.2 for all cohorts in the empirical data indicates no decrease 
of overall synchronization in disease progression when analyzing the delta and theta frequency. Olde Dub-
belink and co-workers found a slowing of resting-state neural oscillations which describes a shift of the 
involved frequencies to the left as indicated by the power spectrum. However, this shift in frequencies 
cannot be defined by synchronization. The amount of synchronization of a population of neurons indicates 
spectral power and would therefore describe the increase in low frequencies and decrease in high frequen-
cies as was also found by Olde Dubbelink and co-workers (Olde Dubbelink et al., 2013; Stoffers et al., 
2008). Because in the bimodal model for the empirical data the global order parameter was analyzed, a 
separate analysis of the order parameter of the delta and theta frequency was not included, and no con-
clusions can be drawn regarding changes in synchronization of either frequency in isolation.  

In the Kuramoto model 𝜅 is the control parameter regulating the order parameter of the system, 
thereby influencing the state of the dynamical system. The higher 𝜅, the more synchronized the system 
is, which is applicable to both the unimodal as well as the bimodal situation. The main issue in the empirical 
data is therefore that 𝜅 cannot be adjusted and no control parameter over the state of the system is 
present. To be able to simultaneously model the slowing of two or multiple frequencies in PD resting-state 
MEG data, phase synchronization does not seem to be the proper measure. The shift in frequencies is 
related to a shift in 𝜔0 for each separate frequency included in the bimodal model. In the method as set 
up by Martens and co-workers however, the included populations are symmetric, refraining the model from 
analyzing frequencies of unequal height (power) and not allowing the visualization of a shift in these fre-
quencies. Therefore, again, this symmetry assumption must be questioned.        

4.6 Comparison between numerical simulations and empirical data 
 

Martens et al. describe the occurrence of standing wave states, corresponding to limit-cycle solu-
tions, in their bifurcation analysis. They describe these standing wave states as two counter-rotating groups 
of oscillators, synchronized to − 𝜔0 or + 𝜔0. Outside of these groups the oscillators are drifting with respect 
to each other and to the synchronized groups. The transition from incoherence to coherence including the 
intermediate standing wave state, realized with increasing 𝜅, is dependent on the degree of bimodality 

(𝜔0 >  
Δ

√3
) of the dynamical system (Martens et al., 2009). Figure 7C shows a shift from the dotted black 

line in the bimodal situation. This deflection could indicate the presence of standing wave states. A bifur-
cation diagram could confirm this finding when limit-cycle solutions would appear. This however is beyond 
the scope of this study 

 𝐷𝜌
(1)(𝜌, 𝜓), as shown in figure 9, 13 and 17, for the order parameters’ dynamics, oscillators’ dy-

namics and empirical data respectively, show no resemblance in their topological outline. 𝐷𝜓
(1)(𝜌, 𝜓) shows 

a flat topology of the order parameters’ dynamics for both the bimodal situation in figure 9 and for the 
empirical data in figure 17, however the values of this topology differ. Thereby, the flat topology of 

𝐷𝜓
(1)(𝜌, 𝜓) of the empirical data does not provide any insightful information on the behaviour of the dy-

namical system. Overall, the conclusion that can be drawn when comparing figure 9 and 17 is that the 
empirical data are clearly not unimodal and adjustments to the bimodal model need to be applied to be 
able to analyze the empirical data.   

In the numerical simulations of the oscillators’ dynamics, the main point of debate comprises 

whether the simulations were recorded long enough. The dynamics, especially in the bimodal situation, do 
not seem to reach a stationary point and 𝜌 does not exactly resemble 0 or 1 because of finite size effects4, 
caused by the finite amount of oscillators. These effects resemble erratic motion and are approached to 
resemble noise, referring to a stochastic process. Finite sizes, however, yield different dynamics which 
could lead to qualitative differences in the topological outline of the dynamical system in comparison to 
the order parameters’ dynamics. In the generation of the order parameters’ dynamics, with infinite sample 

size, which leads to no finite size effects, Gaussian noise was added to resemble a stochastic process. 
Thereby, the simulations of the order parameters’ dynamics, in contrast to the simulation of the oscillators’ 

dynamics and the empirical data, includes an infinite amount of nodes. The network and simulated duration 
of the oscillators’ dynamics will have to be much larger to decrease the finite size effects and to conform 

                                                 
4 A set of simulated oscillator dynamics that were too short have been analyzed and described in appendix A.  
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to the application of the Ott-Antonsen ansatz. When after these adjustments deviations continue to be 
present, other phenomena are probably occurring. Then, the Ott-Antonsen ansatz might not fit to this type 
of data, the low-dimensional reduction method does not apply, the Kramers-Moyal expansion does not 
apply because the data does not show Markov properties or the method does not allow for finite sizes.  

A possible resolution for the problems that arose due to the finite sample sizes of the simulations 
of the oscillators’ dynamics and the empirical data, may come from a new analytical approach by Pikovsky 
and Rosenblum. In this approach, the Ott-Antonsen ansatz was placed in a more general mathematical 
framework which thereby captures all dynamics of the full systems, and works for any sample size. The 
downside of this analysis is its high complexity, and whether it actually holds for the Kuramoto model 
needs to be elucidated  (Martens et al., 2009; Pikovsky & Rosenblum, 2008).      

Another issue concerning the numerical simulations comprises its variability. A high variability 
would imply a better view on the behaviour of the system and better resemblance to the empirical data 
(which contains a high amount of noise). The oscillators’ dynamics contain a high amount of variability due 
to the addition of many perturbations. The order parameters’ dynamics by contrast, only include a small 

amount of noise and thereby only little variability is present.  
The empirical data was initially analyzed for the alpha1 and beta frequency ranges, because these 

two frequencies were shown by Olde Dubbelink et al. to be changing in PD in disease progression (Olde 
Dubbelink et al., 2013). During the analysis however, as previously described in section 3.3, the alpha1 
and beta frequency showed little variation in their average 𝜌-value. Because the delta and theta frequency 
band did show some variation, the decision was made to continue the analysis on these frequency bands. 
Overall however, both combinations of frequency bands displayed similar results where 𝜓 did not show 
any structure or stationarity. Because of these results it should be disputed whether the bimodal distribu-
tion of the natural frequencies is a relevant method to model the simultaneous change in frequencies in 
PD. An implication for further research is to set up a multi modal frequency distribution. An issue of concern 
thereby is the complexity of this system.   
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5 Conclusions 

A bimodal frequency distribution in phase oscillators as proposed by Martens et al. was implemented and 
applied to both numerically simulated and empirical data. A system identification approach was successfully 
applied, resembling the analytic results of the paper of Martens and co-workers. Thereby, a two-dimen-
sional drift coefficient was extracted to model both order parameters of the dynamical system (𝜌 and 𝜓), 
resulting in a complex interpretation. The application of a network with a bimodal frequency distribution to 
resting-state MEG data of PD patients showed neutral stability for the two-dimensional drift coefficient of 
𝜓. Thereby, the two-dimensional drift coefficient of 𝜌 revealed a synchronization value that did not vary 
much as the disease progressed in time. By comparing the results of the two-dimensional drift coefficients 
of the numerically simulated data to the empirical data, no similarities were found in its qualitative topol-
ogy. It can therefore be concluded that the bimodal frequency distribution as applied to the empirical data 
does not capture the simultaneous changes in oscillatory activity as previously found in PD. Also, the 
empirical data is clearly not unimodal. The differences between the order parameters’ dynamics and the 
oscillators’ dynamics indicate an important limitation of the Ott-Antonsen ansatz. It is therefore question-
able whether this method is correct and whether it is applicable to a bimodal frequency distribution without 
homogeneous coupling. The main questions for further research comprise: 1) how to create a proper link 
between the changing frequencies related to PD?; 2) how to break the symmetry in the method as pro-
posed by Martens et al., and is asymmetry the only adaptation or does it need tri-modality or even multi-
modality?; and 3) what is the control parameter in the empirical data and how can this parameter be 
controlled?   
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Appendix A – Oscillators’ dynamics simulated too short 
 
The first numerically simulated oscillators’ dynamics consisted of time series without asymptotic solutions 
and were therefore simulated too short. The parameter settings for these simulations are shown in table 
6.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 18 displays the ‘asymptotic solution of 𝜌’ which are clearly not asymptotic but show transient be-

havior. When comparing figure 18 to figure 7 and 11 hardly any resemblance is seen. Figure 18 shows 
no similarity in the behavior of the asymptotic solutions of 𝜌 in comparison to the theoretical behavior in 
the unimodal situation as described by Strogatz (2000), confirming the insufficient recording time of 
these simulations.   

 
To compare the results of these simulations to section 3.1.1 and 3.1.2, in the following sections, 

the times series with ∆= 0.5 and 𝜔0 = 0 and 𝜔0 = 2 will be analyzed.  

 Figure 19 represents the overall behavior of 𝐷𝜌
(1)(𝜌, 𝜓) in the unimodal and bimodal situation, 

respectively. No resemblance is seen in comparing both situations to 𝐷𝜌
(1)(𝜌, 𝜓) of the order parameters’ 

Parameter Setting 
𝑵   10 000  

𝑻   1  

⋕ 𝒏𝒐𝒅𝒆𝒔    500  

𝝎𝟎  (0: .1: 3) ∗
𝛿0

√3
  

∆   (0:2)

2
   

𝜶  (0: .1: 3)3  

𝜿   (0: 0.05: 5)  

∆𝒕  1

1000
  

Figure 18: Numerical simulations of equation (4), the influence of the coupling strength on synchronization for two different 
values of ∆. The asymptotic solutions of 𝜌 for different values of 𝜔0 are represented by the dots, dependent on coupling 
strength 𝜅. The black dotted line represents the theoretical behaviour of 𝜌 in the unimodal (𝜅𝑐 = 1) and bimodal (𝜅𝑐 = 2) 
situation. Both figure A and B show that no asymptotic solution and no full synchronization is reached by each time series of 
𝜌. Thereby, for ∆= 1 there are clearly not enough data points for increasing values of 𝜔0. 

A.   
  

B.   
  

Table 6: Parameter settings for the numer-
ical simulations of the oscillators’ dynamics 
that were simulated too short (equation 
(4)) 
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dynamics. Figure 19B does show similarities to figure 11 D in the behavior of the zero-crossings of 

𝐷𝜌
(1)(𝜌, 𝜓) after 𝜅 = 3.  

 
Figure 20 shows results of 𝐷𝜌

(1)(𝜌, 𝜓) for three different 𝜅-values. When comparing the unimodal 

to the bimodal situation, it is shown that the topological outline of both systems do not differ qualitatively. 
As described previously for the oscillators’ dynamics in section 3.1.2, the polynomial function which is 
derived from the paper of Martens and co-workers, is not a proper fit as is also visualized in figure 20. 

When comparing figure 20 to figure 12 it is visualized that topological outline of both systems do 
not differ qualitatively, except for figure 20A where a stable fixed point is shown which is not present in 
figure 12A.  
 
 

 
 

 
 
 

A.   
  

B.   
  

Figure 19: Numerical simulations of equation (4), total topological outline of 𝐷𝜌
(1)(𝜌, 𝜓) for each 𝜅- and 𝜌-value including a 

polynomial fit of the zero crossings of 𝐷𝜌
(1)(𝜌,𝜓). A: Unimodal situation: 𝜔0 = 0. B: Bimodal situation 𝜔0 = 2. For both 

situations, very low values of 𝐷𝜌
(1)(𝜌, 𝜓) are shown and no similarities are seen when comparing 𝐷𝜌

(1)(𝜌, 𝜓) to the order 
parameters’ dynamics although when compared to the oscillators’ dynamics, a similarity is seen in the behavior of the zero-

crossings of 𝐷𝜌
(1)(𝜌, 𝜓) after 𝜅 = 3.    
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A.   
  

B.   
  

C.   
  

D.   
  

E.   
  

F.   
  

Figure 20: 𝐷𝜌
(1)(𝜌, 𝜓) (blue dots) with a polynomial fit (red line), including unstable fixed points (triangle pointing 

upwards) and stable fixed points (triangle pointing downwards). The stable fixed points are appointed by the zero 

crossings of the polynomial fit where the derivative of 𝐷𝜌
(1)(𝜌, 𝜓) is negative. The unstable fixed points are appointed 

by the zero crossings of the polynomial fit where the derivative of 𝐷𝜌
(1)(𝜌, 𝜓) is positive. A: Unimodal situation: 𝜔0 =

0, 𝜅 = 0. B: Bimodal situation: 𝜔0 = 2, 𝜅 = 0. A: As 𝜅 < 𝜅𝑐 an unexpected stable fixed point appears for 𝜌 ≈ 0.3, 
indicating partial synchronization of the system. B: As 𝜅 < 𝜅𝑐 an unstable fixed point appears for a very low value of 
𝜌, representing asynchrony in the dynamical system. C: Unimodal situation: 𝜔0 = 0, 𝜅 = 2.5. As 𝜅 > 𝜅𝑐, a stable 
fixed point appears, showing partial synchronization of the dynamical system. D: Bimodal situation: 𝜔0 = 2, 𝜅 = 2.5 
As 𝜅 < 𝜅𝑐 an unstable fixed point appears for a very low value of 𝜌, representing asynchrony in the dynamical system. 
E: Unimodal situation: 𝜔0 = 0, 𝜅 = 5. F: Bimodal situation: 𝜔0 = 2, 𝜅 = 5. E & F: As 𝜅 > 𝜅𝑐, a stable fixed point 
appears, showing partial synchronization of the dynamical system.   
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𝐷𝜌
(1)(𝜌, 𝜓) and 𝐷𝜓

(1)(𝜌, 𝜓) are visualized in figure 21 in the unimodal and bimodal situation. Figure 

21B displays that 𝜓 shows no nullclines which deviates from the values of 𝜓 of the order parameters’ 

dynamics and oscillators’ dynamics. Thereby, these values are unexpected because in the unimodal 
situation there is only one population so no phase difference should be present. In the bimodal situation 
𝐷𝜓

(1)(𝜌, 𝜓) does show values, which is similar to 𝐷𝜓
(1)(𝜌, 𝜓) of the order parameters’ dynamics. The 

topological outline of 𝐷𝜌
(1)(𝜌, 𝜓) does resemble that of the order parameters’ and oscillators’ dynamics (as 

displayed in figure 9 and 13) qualitatively. This is also confirmed by combining both figures for 𝐷𝜌
(1)(𝜌, 𝜓) 

and 𝐷𝜓
(1)(𝜌, 𝜓), whereby fixed points of the system can be localized as is previously described in section 

3.1.1.  
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Figure 21: Two-dimensional drift coefficients 𝐷𝜌
(1)(𝜌, 𝜓) (A and C) and 𝐷𝜓

(1)(𝜌, 𝜓) (B and D) plus null clines 

(black lines) for different 𝜅-values. The null clines are stable when the contour of the figure decreases (negative 
slope) in height (see colorbar), or are unstable when the contour of the figure increases (positive slope) in height. 
A and B: Unimodal situation (𝜔0 = 0). C and D: Bimodal situation (𝜔0 = 2). E: Colour bar indicating the height 

of the contour colors. When comparing 𝐷𝜌
(1)(𝜌,𝜓) in the uni- and bimodal situation no big differences can be seen 

in the topological outline of the system, although in the bimodal situation the system starts to synchronize for a 

higher value of 𝜅. For 𝐷𝜓
(1)(𝜌, 𝜓), the figure displays no stable null clines in the unimodal situation. 
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Appendix B – Model comparison 
 
The AIC and BIC values for each 𝜅-value, as applied to the order paramters’ dynamics, are displayed in 
figure 22. This figure shows that for each value of 𝜅 and in both the uni- and bimodal situation, model 2 
(𝑓2(𝜌) = 𝑎𝜌 + 𝑏𝜌3) has the lowest AIC and BIC values. The parameters of the polynomial function as 
described by Martens and co-workers are thereby confirmed. 

 
The AIC and BIC values for each 𝜅-value, as applied to the oscillators’ dynamics, are displayed in figure 
22. This figure shows that for each value of 𝜅 and in both the uni- and bimodal situation, model 2 (𝑓2(𝜌) =

𝑎𝜌 + 𝑏𝜌3) has the lowest AIC and BIC values. The parameters of the polynomial function as described by 
Martens and co-workers are thereby again confirmed. 
 

A.   
  

B.   
  

C.   
  

D.   
  

Figure 22: AIC and BIC values for each 𝜅-value for the order parameters’ times series. The colored lines indicate each model 

that was compared in this analysis. An overview of the included models is given in table 2 (section 2.1.1). A & B: AIC (A) and 
BIC (B) values in the unimodal situation: 𝜔0 = 0. C & D: AIC and BIC values in the bimodal situation: 𝜔0 = 2. These figures 
show that for each situation and for both the AIC and BIC, model 2 (𝑓2(𝜌) = 𝑎𝜌 + 𝑏𝜌3) contains the lowest values and is 
appointed as the best model to fit the order parameters’ times series.        
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Figure 23: AIC and BIC values for each 𝜅-value for the order parameters’ times series. The colored lines indicate each model 

that was compared in this analysis. An overview of the included models is given in table 2 (section 2.1.1). A & B: AIC (A) 
and BIC (B) values in the unimodal situation: 𝜔0 = 0. C & D: AIC and BIC values in the bimodal situation: 𝜔0 = 2. These 
figures show that for each situation and for both the AIC and BIC, model 2 (𝑓2(𝜌) = 𝑎𝜌 + 𝑏𝜌3) contains the lowest values 
and is appointed as the best model to fit the order parameters’ times series.        
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