Unravelling the etiology of muscle injuries
Project Parameters
Related Research Themes & Projects

Force transmission within the Achilles tendon
The aim of this project is to investigate the distribution of deformation within the Achilles tendon and its mechanical consequences.

Neuromechanical responses to stroke in the rat
The aim of this project is to improve our understanding of the changes in neural control of movement and secondary changes in skeletal muscle properties in response to a stroke.

Interactions between disc degeneration and multifidus atrophy
The aim of this project is to understand how the mechanical effects of atrophy of the multifidus muscles, as observed in patients with low-back pain, interact with those of intervertebral disc degeneration. Disc degeneration reduces spine stiffness and may impair control over spine movement. Multifidus atrophy is assumed to result from nociceptive afference from spinal structures and may all negatively affect control over the spine. In turn, reduced control over spine movement may enhance disc degeneration.

Functional implication of myofascial force transmission in hemophilia patients with severe joint damage
The aims of this project are: (i) to assess force transmission between muscles and with non-muscular structures within the leg, (ii) to assess adaptations in neuromuscular control of hemophilia patients with severe ankle joint damage.

Spine Biomechanics
Understanding biomechanical behavior of the spine under short term and long term loading is vital to comprehend the control over spine movement, unravel injury mechanisms and to understand intervertebral disc degeneration. In addition, this work is needed to improve surgical interventions related to, e.g., treatment of scoliosis, and for effective design of new therapeutic interventions, such as tissue engineering methods to restore spine function. Therefore, we use mechanically test of human and animal spines and motion segments to assess stiffness, range of motion, failure loads, and fluid flow mechanisms.